A precise dependence analysis for multi-dimensional arrays under specific dependence direction

被引:2
|
作者
Chang, WL
Chu, CP [1 ]
Wu, JH
机构
[1] So Taiwan Univ Technol, Dept Informat Management, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
关键词
parallelizing/vectorizing compilers; data dependence analysis; loop parallelization; supercomputing;
D O I
10.1016/S0164-1212(01)00118-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In process of automatic parallelizing/vectorizing constant-bound loops with multi-dimensional arrays under specific dependence direction, the Lambda test is claimed to be an efficient and precise data dependence analysis method that can check whether there exist generally inexact 'real-valued' solutions to the derived dependence equations. In this paper, we propose a precise data dependence analysis method - the multi-dimensional direction vector I test. The multi-dimensional direction vector I test can be applied towards testing whether there exist generally accurate 'integer-valued' solutions to the dependence equations derived from multi-dimensional arrays under specific dependence direction in constant-bound loops. Experiments with benchmark showed that the accuracy rate and the improvement rate for the proposed method are approximately 33.3% and 21.6%, respectively. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [1] Investigation of the Multi-dimensional PLS Uncertainty and Dependence
    Wang Q.
    Wu Z.
    Liu S.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2019, 39 (02): : 369 - 374
  • [2] Is exercise dependence a uni or a multi-dimensional concept? A bifactor analysis of the Exercise Dependence Scale-Revised
    Kern, Laurence
    Kotbagi, Gayatri
    Romo, Lucia
    Morvan, Yannick
    JOURNAL OF BEHAVIORAL ADDICTIONS, 2019, 8 : 165 - 165
  • [3] A Polynomial-Time Dependence Test for Determining Integer-Valued Solutions in Multi-Dimensional Arrays Under Variable Bounds
    Weng-Long Chang
    Chih-Ping Chu
    Jia-Hwa Wu
    The Journal of Supercomputing, 2005, 31 : 111 - 135
  • [4] A polynomial-time dependence test for determining integer-valued solutions in multi-dimensional arrays under variable bounds
    Chang, WL
    Chu, CP
    Wu, JH
    JOURNAL OF SUPERCOMPUTING, 2005, 31 (02): : 111 - 135
  • [5] Probing internal gradients dependence in sandstones with multi-dimensional NMR
    Xiao, Lizhi
    Liu, Huabing
    Deng, Feng
    Zhang, Zongfu
    An, Tianlin
    Zong, Fangrong
    Anferov, Vladimir
    Anferova, Sofia
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 90 - 93
  • [6] Multi-dimensional subgroups of alcohol dependence useful for research and therapy
    Hesselbrock, V. M.
    Hesselbrock, M. N.
    Chartier, K. G.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2008, 32 (06) : 310A - 310A
  • [7] Multi-Dimensional Arrays for Watermarking
    Moreno, Oscar
    Tirkel, Andrew
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 2691 - 2695
  • [8] Multi-dimensional Arrays with Levels
    Sinkarovs, Artjoms
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (317): : 57 - 71
  • [9] Tiling multi-dimensional arrays
    Sharp, JP
    FUNDAMENTALS OF COMPUTATION THEORY, 1999, 1684 : 500 - 511
  • [10] A multiple motive/multi-dimensional approach to measure smokeless tobacco dependence
    Mushtaq, Nasir
    Beebe, Laura A.
    Vesely, Sara K.
    Neas, Barbara R.
    ADDICTIVE BEHAVIORS, 2014, 39 (03) : 622 - 629