A physical analogue of the Schelling model

被引:111
|
作者
Vinkovic, Dejan
Kirman, Alan
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Aix Marseille 3, Inst Univ France, Ecole Hautes Etud Sci Sociales, Grp Rech Econ Quantitat Aix Marseille, F-13002 Marseille, France
关键词
segregation; socioeconomy; surface tension;
D O I
10.1073/pnas.0609371103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a mathematical link between Schelling's socio-economic model of segregation and the physics of clustering. We replace the economic concept of "utility" by the physics concept of a particle's internal energy. As a result cluster dynamics is driven by the "surface tension" force. The resultant segregated areas can be very large and can behave like spherical "liquid" droplets or as a collection of static clusters in "frozen" form. This model will hopefully provide a useful framework for studying many spatial economic phenomena that involve individuals making location choices as a function of the characteristics and choices of their neighbors.
引用
收藏
页码:19261 / 19265
页数:5
相关论文
共 50 条
  • [1] The Schelling model on Z
    Deijfen, Maria
    Vilkas, Timo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 800 - 814
  • [2] A Schelling Model with Immigration Dynamics
    Urselmans, Linda
    ARTIFICIAL LIFE AND INTELLIGENT AGENTS, 2018, 732 : 3 - 15
  • [3] Scaling limits of the Schelling model
    Holden, Nina
    Sheffield, Scott
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (1-2) : 219 - 292
  • [4] A Schelling model with adaptive tolerance
    Urselmans, Linda
    Phelps, Steve
    PLOS ONE, 2018, 13 (03):
  • [5] Scaling limits of the Schelling model
    Nina Holden
    Scott Sheffield
    Probability Theory and Related Fields, 2020, 176 : 219 - 292
  • [6] The Master of Time. An Eternity Model following Schelling's Late Philosophy and physical Models
    Adair-Toteff, Christopher
    THEOLOGICAL STUDIES, 2018, 79 (04) : 926 - 926
  • [7] Phase diagram of a Schelling segregation model
    Gauvin, L.
    Vannimenus, J.
    Nadal, J. -P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (02): : 293 - 304
  • [8] ON THE EXTENSION OF SCHELLING'S SEGREGATION MODEL
    Liu, Zeyu
    Li, Xueping
    Khojandi, Andhita
    Lazarova-Molnar, Sanja
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 285 - 296
  • [9] Statistical physics of the Schelling model of segregation
    Dall'Asta, L.
    Castellano, C.
    Marsili, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [10] Venues and segregation: A revised Schelling model
    Silver, Daniel
    Byrne, Ultan
    Adler, Patrick
    PLOS ONE, 2021, 16 (01):