A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach

被引:26
|
作者
Russo, G. [1 ]
Attili, A. [1 ]
Battistoni, G. [2 ]
Bertrand, D. [7 ]
Bourhaleb, F. [8 ]
Cappucci, F. [2 ]
Ciocca, M. [9 ]
Mairani, A. [9 ]
Milian, F. M. [1 ,10 ]
Molinelli, S. [9 ]
Morone, M. C. [3 ,4 ]
Muraro, S. [2 ]
Orts, T. [7 ]
Patera, V. [5 ,6 ]
Sala, P. [2 ]
Schmitt, E. [1 ]
Vivaldo, G. [1 ]
Marchetto, F. [1 ]
机构
[1] Ist Nazl Fis Nucl, I-10125 Turin, Italy
[2] Ist Nazl Fis Nucl, Via Celoria 16, I-20133 Milan, Italy
[3] Ist Nazl Fis Nucl, Rome, Italy
[4] Univ Roma Tor Vergata, Rome, Italy
[5] Ist Nazl Fis Nucl, Lab Nazl Frascati, Rome, Italy
[6] Univ Roma La Sapienza, Rome, Italy
[7] Ion Beam Applicat, Louvain La Neuve, Belgium
[8] Internet Simulat Evaluat Envis I SEE, Turin, Italy
[9] Ctr Nazl Adroterapia Oncol CNAO, Pavia, Italy
[10] Univ Estadual Santa Cruz, Ilheus, Brazil
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2016年 / 61卷 / 01期
关键词
beam model; ion therapy; treatment planning; relative biological effectiveness; microdosimetric kinetic model; local effect model; Monte Carlo; PROTON TREATMENT PLAN; LOW-DOSE ENVELOPE; DELIVERY-SYSTEM; RADIOTHERAPY; MODELS; RBE; DISTRIBUTIONS;
D O I
10.1088/0031-9155/61/1/183
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the pertrack information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.
引用
收藏
页码:183 / 214
页数:32
相关论文
共 19 条
  • [1] Fast optimization and dose calculation in scanned ion beam therapy
    Hild, S.
    Graeff, C.
    Trautmann, J.
    Kraemer, M.
    Zink, K.
    Durante, M.
    Bert, C.
    MEDICAL PHYSICS, 2014, 41 (07)
  • [2] A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning
    Inaniwa, T.
    Kanematsu, N.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (01): : 437 - 451
  • [3] FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy
    Kozlowska, Wioletta S.
    Bohlen, Till T.
    Cuccagna, Caterina
    Ferrari, Alfredo
    Fracchiolla, Francesco
    Magro, Giuseppe
    Mairani, Andrea
    Schwarz, Marco
    Vlachoudis, Vasilis
    Georg, Dietmar
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (07):
  • [4] Physical and biological beam modeling for carbon beam scanning at Osaka Heavy Ion Therapy Center
    Fujitaka, Shinichiro
    Fujii, Yusuke
    Nihongi, Hideaki
    Nakayama, Satoshi
    Takashina, Masaaki
    Hamatani, Noriaki
    Tsubouchi, Toshiro
    Yagi, Masashi
    Minami, Kazumasa
    Ogawa, Kazuhiko
    Mizoe, Junetsu
    Kanai, Tatsuaki
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (07): : 77 - 92
  • [5] Multiscale approach predictions for biological outcomes in ion-beam cancer therapy
    Alexey Verkhovtsev
    Eugene Surdutovich
    Andrey V. Solov’yov
    Scientific Reports, 6
  • [6] Multiscale approach predictions for biological outcomes in ion-beam cancer therapy
    Verkhovtsev, Alexey
    Surdutovich, Eugene
    Solov'yov, Andrey V.
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Optimization algorithm for overlapping-field plans of scanned ion beam therapy with reduced sensitivity to range and setup uncertainties
    Inaniwa, Taku
    Kanematsu, Nobuyuki
    Furukawa, Takuji
    Noda, Koji
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (06): : 1653 - 1669
  • [8] Towards a Helium Ion-Beam Therapy Program in 2020: Physical, Biological and Clinical Considerations
    Besuglow, J.
    Mein, S.
    Kopp, B.
    Brons, S.
    Ackermann, B.
    Naumann, J.
    Abdollahi, A.
    Haberer, T.
    Debus, J.
    Mairani, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E343 - E344
  • [9] Dynamic Target Definition: A novel approach for PTV definition in ion beam therapy
    Cabal, Gonzalo A.
    Jaekel, Oliver
    RADIOTHERAPY AND ONCOLOGY, 2013, 107 (02) : 227 - 233
  • [10] FROG: a novel GPU-based approach to the pencil beam algorithm for particle therapy
    Mein, S.
    Tessonnier, T.
    Kopp, B.
    Choi, K.
    Haberer, T.
    Debus, J.
    Abdollahi, A.
    Mairani, A.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S992 - S993