Improved VIIRS and MODIS SST Imagery

被引:28
|
作者
Gladkova, Irina [1 ,2 ]
Ignatov, Alexander [3 ]
Shahriar, Fazlul [1 ,4 ]
Kihai, Yury [2 ]
Hillger, Don [5 ]
Petrenko, Boris [2 ]
机构
[1] CUNY City Coll, NOAA, CREST, 138th St, New York, NY 10031 USA
[2] Global Sci & Technol Inc, Greenbelt, MD 20770 USA
[3] NOAA STAR, NCWCP, 5830 Univ Res Court, College Pk, MD 20740 USA
[4] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA
[5] NOAA STAR, Reg & Mesoscale Meteorol Branch RAMMB, Ft Collins, CO 80523 USA
关键词
VIIRS; MODIS; imagery; bow-tie; aggregation; deletion; SST; CLEAR-SKY MASK;
D O I
10.3390/rs8010079
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Moderate Resolution Imaging Spectroradiometers (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP)/Joint Polar Satellite System (JPSS) satellites, are capable of providing superior sea surface temperature (SST) imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath) and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA) Advanced Clear-Sky Processor for Oceans (ACSPO) SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] AVHRR, MODIS, and VIIRS radiometric stability and consistency in SST bands
    Liang, XingMing
    Ignatov, Alexander
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (06) : 3161 - 3171
  • [2] ASSESSMENT OF VIIRS GEOLOCATION AT SUBPIXEL LEVEL USING MODIS IMAGERY
    Trishchenko, Alexander P.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6448 - 6451
  • [3] Computing Coastal Ocean Surface Currents from MODIS and VIIRS Satellite Imagery
    Liu, Jianfei
    Emery, William J.
    Wu, Xiongbin
    Li, Miao
    Li, Chuan
    Zhang, Lan
    REMOTE SENSING, 2017, 9 (10)
  • [4] A fast and robust implementation of the adaptive destriping algorithm for SNPP VIIRS and Terra/Aqua MODIS SST
    Mikelsons, Karlis
    Ignatov, Alexander
    Bouali, Marouan
    Kihai, Yury
    OCEAN SENSING AND MONITORING VII, 2015, 9459
  • [5] Limb Correction of MODIS and VIIRS Infrared Channels for the Improved Interpretation of RGB Composites
    Elmer, Nicholas J.
    Berndt, Emily
    Jedlovec, Gary J.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2016, 33 (05) : 1073 - 1087
  • [6] Improved Techniques for Crop Classification using MODIS Imagery
    Doraiswamy, Paul C.
    Akhmedov, Bakhyt
    Stern, Alan J.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2084 - +
  • [7] On the Prediction of Upwelling Events at the Colombian Caribbean Coasts from Modis-SST Imagery
    Alonso del Rosario, Jose J.
    Vidal Perez, Juan M.
    Blazquez Gomez, Elizabeth
    SENSORS, 2019, 19 (13):
  • [8] An Improved Algorithm for the Detection of Cirrus Clouds in the Tibetan Plateau Using VIIRS and MODIS Data
    Xia, L.
    Zhao, F.
    Ma, Y.
    Sun, Z. W.
    Shen, X. Y.
    Mao, K. B.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2015, 32 (11) : 2125 - 2129
  • [9] MODIS and VIIRS Lunar Observations and Applications
    Xiong, Xiaoxiong
    Wang, Zhipeng
    Sun, Junqiang
    Angal, Amit
    Fulbright, Jon
    Butler, James
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XVII, 2013, 8889
  • [10] MODIS AND VIIRS GEOMETRIC PERFORMANCE COMPARISON
    Wolfe, Robert E.
    Nishihama, Masahiro
    Lin, Guoqing
    Tewari, Krishna P.
    Montano, Enrique
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5017 - 5020