Ultra-low frequency vibration control of urban rail transit: the general quasi-zero-stiffness vibration isolator

被引:26
|
作者
Wang, Liuchong [1 ,2 ]
Zhao, Yannan [1 ,2 ]
Sang, Tao [1 ,2 ]
Zhou, Haiyang [1 ,2 ]
Wang, Ping [1 ,2 ]
Zhao, Caiyou [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Key Lab High Speed Railway Engn, Minist Educ, Chengdu, Peoples R China
[2] Southwest Jiaotong Univ, Sch Civil Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-zero-stiffness; vibration control; ultra-low frequency; floating slab track; train load;
D O I
10.1080/00423114.2021.1874428
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
More intensive vibration reduction measures are necessary given increasing demands for urban rail transit vibration control. While the floating slab track system remains the most effective vibration isolation measure, a large vibration reduction blind area can still be observed at low frequencies. In the present study, a general quasi-zero-stiffness vibration isolator (GQZS vibration isolator) was proposed to enhance the ultra-low frequency (< 20 Hz) vibration control capability of floating slab tracks. The dimensionless analysis was utilised to design nonlinear stiffness curves and to determine the proposed GQZS vibration isolator static mechanical performance. Analyses of the dynamic mechanical behaviours of the proposed vibration isolator were conducted based on the force transmissibility rate. Results showed that the designed stiffness curve effectively reduced force transmissibility at low frequencies. A vehicle-floating slab track-substrate coupled dynamic model was proposed considering complicated train loads, and the results were consistent with force transmissibility analyses. When compared with conventional linear steel spring vibration isolators, the proposed GQZS vibration isolator significantly enhanced the floating slab track vibration reduction performance at ultra-low frequencies without affecting the driving stability or safety.
引用
收藏
页码:1788 / 1805
页数:18
相关论文
共 50 条
  • [1] Designing of Compact Low Frequency Vibration Isolator with Quasi-Zero-Stiffness
    Valeev, Anvar
    Zotov, Alexey
    Kharisov, Shamil
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2015, 34 (04) : 459 - 473
  • [2] A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism
    Wang, Kai
    Zhou, Jiaxi
    Chang, Yaopeng
    Ouyang, Huajiang
    Xu, Daolin
    Yang, Yang
    NONLINEAR DYNAMICS, 2020, 101 (02) : 755 - 773
  • [3] A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism
    Kai Wang
    Jiaxi Zhou
    Yaopeng Chang
    Huajiang Ouyang
    Daolin Xu
    Yang Yang
    Nonlinear Dynamics, 2020, 101 : 755 - 773
  • [4] Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation
    Liu, Ji
    Wang, Yanhui
    Yang, Shaoqiong
    Sun, Tongshuai
    Yang, Ming
    Niu, Wendong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [5] Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation
    Zhang, Chen
    He, Junsen
    Zhou, Guiqian
    Wang, Kai
    Xu, Daolin
    Zhou, Jiaxi
    MECHANISM AND MACHINE THEORY, 2023, 181
  • [6] On the force transmissibility of a vibration isolator with quasi-zero-stiffness
    Carrella, A.
    Brennan, M. J.
    Kovacic, I.
    Waters, T. P.
    JOURNAL OF SOUND AND VIBRATION, 2009, 322 (4-5) : 707 - 717
  • [7] Active Control of Quasi-Zero-Stiffness Vibration Isolator with Variable Load
    Sun, Ke
    Tang, Jie
    Yang, Yukang
    Jiang, Bolong
    Li, Yinghui
    Cao, Dengqing
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (21)
  • [8] Static analysis of a quasi-zero-stiffness vibration isolator
    Carrella, A.
    Waters, T. P.
    Brennan, M. J.
    Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 3373 - 3380
  • [9] Proportional-retarded control of a quasi-zero-stiffness vibration isolator
    Cai, Jiazhi
    Gao, Qingbin
    Zhang, Xujie
    JOURNAL OF SOUND AND VIBRATION, 2024, 578
  • [10] A quasi-zero-stiffness vibration isolator inspired by Kresling origami
    Zhou, Haodong
    Gao, Jiangjun
    Chen, Yao
    Shen, Zhengliang
    Lv, Hengzhu
    Sareh, Pooya
    STRUCTURES, 2024, 69