Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition

被引:80
|
作者
Wang, Yitong [1 ]
Gong, Dihong [1 ]
Zhou, Zheng [1 ]
Ji, Xing [1 ]
Wang, Hao [1 ]
Li, Zhifeng [1 ]
Liu, Wei [1 ]
Zhang, Tong [1 ]
机构
[1] Tencent AI Lab, Beijing, Peoples R China
来源
关键词
Age-invariant face recognition; Convolutional neural networks; Cross-age face dataset; PATTERNS;
D O I
10.1007/978-3-030-01267-0_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As facial appearance is subject to significant intra-class variations caused by the aging process over time, age-invariant face recognition (AIFR) remains a major challenge in face recognition community. To reduce the intra-class discrepancy caused by the aging, in this paper we propose a novel approach (namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant deep face features. Specifically, we decompose deep face features into two orthogonal components to represent age-related and identity-related features. As a result, identity-related features that are robust to aging are then used for AIFR. Besides, for complementing the existing cross-age datasets and advancing the research in this field, we construct a brand-new large-scale Cross-Age Face dataset (CAF). Extensive experiments conducted on the three public domain face aging datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effectiveness of the proposed approach and the value of the constructed CAF dataset on AIFR. Benchmarking our algorithm on one of the most popular general face recognition (GFR) dataset LFW additionally demonstrates the comparable generalization performance on GFR.
引用
收藏
页码:764 / 779
页数:16
相关论文
共 50 条
  • [1] Age-invariant face recognition based on deep features analysis
    Moustafa, Amal A.
    Elnakib, Ahmed
    Areed, Nihal F. F.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (05) : 1027 - 1034
  • [2] Age-invariant face recognition based on deep features analysis
    Amal A. Moustafa
    Ahmed Elnakib
    Nihal F. F. Areed
    Signal, Image and Video Processing, 2020, 14 : 1027 - 1034
  • [3] Multi-Features Fusion and Decomposition for Age-Invariant Face Recognition
    Meng, Lixuan
    Yan, Chenggang
    Li, Jun
    Yin, Jian
    Liu, Wu
    Xie, Hongtao
    Li, Liang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3146 - 3154
  • [4] Age-Invariant Face Recognition
    Park, Unsang
    Tong, Yiying
    Jain, Anil K.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 947 - U194
  • [5] Age-Invariant Face Recognition Using Triangle Geometric Features
    Ali, Amal Seralkhatem Osman
    Asirvadam, Vijanth Sagayan
    Malik, Aamir Saeed
    Eltoukhy, Mohamed Meselhy
    Aziz, Azrina
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (05)
  • [6] Deep Learning in Age-invariant Face Recognition: A Comparative Study
    SAJID, M. U. H. A. M. M. A. D.
    AL, N. O. U. M. A. N., I
    RATYAL, N. A. E. E. M. I. Q. B. A. L.
    USMAN, M. U. H. A. M. M. A. D.
    BUTT, F. A. I. S. A. L. M. E. H. M. O. O. D.
    RIAZ, I. M. R. A. N.
    MUSADDIQ, U. S. M. A. N.
    AZIZ BAIG, M. I. R. Z. A. J. A. B. B. A. R.
    BAIG, S. H. A. H. B. A. Z.
    AHMAD SALARIA, U. M. A. I. R.
    COMPUTER JOURNAL, 2022, 65 (04): : 940 - 972
  • [7] Transformer for Age-Invariant Face Recognition
    Liu Cheng
    Cao Liangcai
    Jin Ye
    Wang Haowei
    Yin Songfeng
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [8] Towards Age-Invariant Face Recognition
    Zhao, Jian
    Yan, Shuicheng
    Feng, Jiashi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 474 - 487
  • [9] Age-invariant face network (AFN): a discriminative model towards age-invariant face recognition
    Li J.
    Zhou L.
    Chen J.
    Neural Computing and Applications, 2024, 36 (22) : 13689 - 13702
  • [10] Age-invariant face recognition based on identity-age shared features
    Zhang, Zikang
    Yin, Songfeng
    Cao, Liangcai
    VISUAL COMPUTER, 2024, 40 (08): : 5465 - 5474