High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes

被引:35
|
作者
McNulty, David [1 ]
Geaney, Hugh [1 ]
Armstrong, Eileen [1 ]
O'Dwyer, Colm [1 ,2 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Chem, Cork T12 YN60, Ireland
[2] Tyndall Natl Inst, Micronano Syst Ctr, Cork T12 R5CP, Ireland
基金
爱尔兰科学基金会;
关键词
VANADIUM-OXIDE NANOTUBES; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ENERGY-STORAGE; HIGH-POWER; GRAPHENE; ANODES; CO3O4; CHALLENGES;
D O I
10.1039/c6ta00338a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structured porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries. However, most advances have been limited to half cells or lithium batteries, and with a single mode of charge storage (intercalation, conversion, or alloying etc.). The use of dual-mode charge storage with non-traditional material pairings, while maintaining the numerous benefits of nanoscale materials, could significantly improve the capacity, energy density, stability and overall battery safety considerably. Here, we demonstrate an efficient, high capacity full inverse opal Li-ion battery with excellent cycle life, where both the cathode and anode binder-free electrodes are composed of 3D nanocrystal assemblies as inverse opal (IO) structures of intercalation-mode V2O5 IO cathodes and conversion-mode Co3O4 IO anodes. Electrochemically charged Co3O4 IOs function as Li-ion anodes and the full V2O5/Co3O4 cell exhibits superior performance compared to lithium batteries or half cells of either IO material, with voltage window compatibility for high capacity and energy density. Through asymmetric charge-discharge tests, the V2O5 IO/Co3O4 IO full Li-ion cell can be quickly charged, and discharged both quickly and slowly without any capacity decay. We demonstrate that issues due to the decomposition of the electrolyte with increased cycling can be overcome by complete electrolyte infiltration to remove capacity fading from long term cycling at high capacity and rate. Lastly, we show that the V2O5 IO/Co3O4 IO full Li-ion cells cycled in 2 and 3-electrode flooded cells maintain 150 mA h g(-1) and remarkably, show no capacity fade at any stage during cycling for at least 175 cycles. The realization of an all-3D structured anode and cathode geometry with new mutually co-operative dual-mode charge storage mechanisms and efficient electrolyte penetration to the nanocrystalline network of material provides a testbed for advancing high rate, high capacity, stable Li-ion batteries using a wide range of materials pairings.
引用
收藏
页码:4448 / 4456
页数:9
相关论文
共 50 条
  • [1] Nanowires for high-performance Li-ion battery electrodes
    McDowell, Matthew T.
    Cui, Yi
    RSC Smart Materials, 2015, 2015-January (11): : 363 - 399
  • [2] Halogen conversion-intercalation chemistry promises high energy density Li-ion battery
    Huijun Yang
    Haoshen Zhou
    ScienceBulletin, 2019, 64 (19) : 1393 - 1395
  • [3] Halogen conversion-intercalation chemistry promises high energy density Li-ion battery
    Yang, Huijun
    Zhou, Haoshen
    SCIENCE BULLETIN, 2019, 64 (19) : 1393 - 1395
  • [4] Impedance simulation of a Li-ion battery with porous electrodes and spherical Li+ intercalation particles
    Huang, R. W. J. M.
    Chung, Foen
    Kelder, E. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) : A1459 - A1465
  • [5] Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite
    Chongyin Yang
    Ji Chen
    Xiao Ji
    Travis P. Pollard
    Xujie Lü
    Cheng-Jun Sun
    Singyuk Hou
    Qi Liu
    Cunming Liu
    Tingting Qing
    Yingqi Wang
    Oleg Borodin
    Yang Ren
    Kang Xu
    Chunsheng Wang
    Nature, 2019, 569 : 245 - 250
  • [6] Improving the electrochemical performance of organic Li-ion battery electrodes
    Renault, Steven
    Brandell, Daniel
    Gustafsson, Torbjorn
    Edstrom, Kristina
    CHEMICAL COMMUNICATIONS, 2013, 49 (19) : 1945 - 1947
  • [7] Preplanting Nanosilica into Binderless Battery Electrodes for High-Performance Li-Ion Batteries
    Lee, Hyuntae
    Bak, Cheol
    Lim, Minhong
    An, Hyeongguk
    Byun, Seoungwoo
    Lee, Yong Min
    Lee, Hongkyung
    ACS APPLIED NANO MATERIALS, 2023, 6 (04) : 3128 - 3137
  • [8] Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite
    Yang, Chongyin
    Chen, Ji
    Ji, Xiao
    Pollard, Travis P.
    Lu, Xujie
    Sun, Cheng-Jun
    Hou, Singyuk
    Liu, Qi
    Liu, Cunming
    Qing, Tingting
    Wang, Yingqi
    Borodin, Oleg
    Ren, Yang
    Xu, Kang
    Wang, Chunsheng
    NATURE, 2019, 569 (7755) : 245 - +
  • [9] Phenolic Resin as an Inexpensive High Performance Binder for Li-Ion Battery Alloy Negative Electrodes
    Hatchard, T. D.
    Bissonnette, P.
    Obrovac, M. N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : A2035 - A2039
  • [10] Facile Fabrication of High-Performance Li-Ion Battery Carbonaceous Anode from Li-Ion Battery Waste
    Li, Zheng
    Li, Songxian
    Wang, Tao
    Yang, Kai
    Zhou, Yangen
    Tian, Zhongliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)