A general-purpose framework for FPGA-accelerated genetic algorithms

被引:3
|
作者
Guo, Liucheng [1 ]
Funie, Andreea Ingrid [2 ]
Xie, Zhongliu [2 ]
Thomas, David [1 ]
Luk, Wayne [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
genetic algorithm; field programmable gate array; FPGA; automated framework;
D O I
10.1504/IJBIC.2015.073183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
FPGA-based genetic algorithms (GAs) can effectively optimise complex applications, but require extensive hardware architecture customisation. To promote these accelerated GAs to potential users without hardware design experience, this study proposes a general-purpose automated framework for creating and executing a GA system on FPGAs. This framework contains scalable and customisable hardware architectures while providing a unified platform for different chromosomes. At compile-time, only a high-level input of the target application needs to be provided, without any hardware-specific code being necessary. At run-time, application inputs and GA parameters can be tuned, without time-consuming recompilation, for finding further good configurations of GA execution. The framework was tested on a high performance FPGA platform using nine problems and benchmarks, including the travelling salesman problem, a locating problem and the NP-hard set covering problem. Experiments show the system's flexibility and an average speedup of 29 times over a multi-core CPU.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 50 条
  • [1] Automated Framework for General-Purpose Genetic Algorithms in FPGAs
    Guo, Liucheng
    Thomas, David B.
    Luk, Wayne
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, 2014, 8602 : 714 - 725
  • [2] A GENERAL-PURPOSE FRAMEWORK FOR CAD ALGORITHMS
    RUBIN, SM
    IEEE COMMUNICATIONS MAGAZINE, 1991, 29 (05) : 56 - 62
  • [3] A General-Purpose Framework for Genetic Improvement
    Marino, Francesco
    Squillero, Giovanni
    Tonda, Alberto
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 345 - 352
  • [4] A General-Purpose Path Generation Method Using Genetic Algorithms
    Inagaki, Jun
    Mizuno, Toshitada
    Shirakawa, Tomoaki
    Shimono, Tetsuo
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (07) : 1503 - 1506
  • [5] GhostSZ: A Transparent FPGA-Accelerated Lossy Compression Framework
    Xiong, Qingqing
    Patel, Rushi
    Yang, Chen
    Geng, Tong
    Skjellum, Anthony
    Herbordt, Martin C.
    2019 27TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2019, : 258 - 266
  • [6] A Unified FPGA Virtualization Framework for General-Purpose Deep Neural Networks in the Cloud
    Zeng, Shulin
    Dai, Guohao
    Sun, Hanbo
    Liu, Jun
    Li, Shiyao
    Ge, Guangjun
    Zhong, Kai
    Guo, Kaiyuan
    Wang, Yu
    Yang, Huazhong
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2022, 15 (03)
  • [7] Customizable FPGA IP Core Implementation of a General-Purpose Genetic Algorithm Engine
    Fernando, Pradeep R.
    Katkoori, Srinivas
    Keymeulen, Didier
    Zebulum, Ricardo
    Stoica, Adrian
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 133 - 149
  • [8] General-purpose digital ticket framework
    Fujimura, K
    Nakajima, Y
    PROCEEDINGS OF THE 3RD USENIX WORKSHOP ON ELECTRONIC COMMERCE, 1998, : 177 - 186
  • [9] Bioinspired framework for general-purpose learning
    de Toledo, SA
    Barreiro, JM
    FOUNDATIONS AND TOOLS FOR NEURAL MODELING, PROCEEDINGS, VOL I, 1999, 1606 : 507 - 516
  • [10] A general-purpose kernel based on genetic algorithms for optimization of complex analog circuits
    Vaz, B
    Costa, R
    Paulino, N
    Goes, J
    Tavares, R
    Steiger-Garçäo, A
    PROCEEDINGS OF THE 44TH IEEE 2001 MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2001, : 83 - 86