MACHINE LEARNING AND CAROTID ARTERY CT RADIOMICS IDENTIFY SIGNIFICANT DIFFERENCES BETWEEN CULPRIT AND NON-CULPRIT LESIONS IN PATIENTS WITH STROKE AND TRANSIENT ISCHAEMIC ATTACK

被引:0
|
作者
Le, Elizabeth Phuong Vi [1 ]
Evans, Nicholas [1 ]
Tarkin, Jason [1 ]
Chowdhury, Mohammed [2 ]
Zaccagna, Fulvio [3 ]
Pavey, Holly [4 ]
Wall, Chris [1 ]
Huang, Yuan [3 ]
Weir-McCall, Jonathan [3 ]
Warburton, Elizabeth [1 ]
Rundo, Leonardo [3 ]
Schonlieb, Carola-Bibiane [5 ]
Sala, Evis [3 ]
Rudd, James H. F. [1 ]
机构
[1] Univ Cambridge, Dept Med, Cambridge, England
[2] Univ Cambridge, Dept Surg, Cambridge, England
[3] Univ Cambridge, Dept Radiol, Cambridge, England
[4] Univ Cambridge, Div Expt Med & Immunotherapeut, Cambridge, England
[5] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
关键词
D O I
10.1136/heartjnl-2020-BCS.105
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
105
引用
收藏
页码:A82 / A84
页数:5
相关论文
共 2 条
  • [1] Radiomics applied to carotid CT angiograms can identify significant differences between culprit and non-culprit lesions in patients with stroke and transient ischaemic attack
    Le, E.
    Evans, N. R.
    Tarkin, J. M.
    Chowdhury, M. M.
    Zaccagna, F.
    Pavey, H.
    Ganeshan, B.
    Wall, C.
    Huang, Y.
    Weir-Mccall, J. R.
    Warburton, E. A.
    Schonlieb, C. B.
    Sala, E.
    Rudd, J. H. F.
    EUROPEAN HEART JOURNAL, 2020, 41 : 2417 - 2417
  • [2] Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics
    Xia, Hai
    Yuan, Lei
    Zhao, Wei
    Zhang, Chenglei
    Zhao, Lingfeng
    Hou, Jialin
    Luan, Yancheng
    Bi, Yuxin
    Feng, Yaoyu
    FRONTIERS IN NEUROLOGY, 2023, 14