Multilevel additive and multiplicative methods for orthogonal spline collocation problems

被引:11
|
作者
Bialecki, B [1 ]
Dryja, M [1 ]
机构
[1] UNIV WARSAW,DEPT MATH,PL-02097 WARSAW,POLAND
关键词
D O I
10.1007/s002110050277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel preconditioners are proposed for the iterative solution of the discrete problems which arise when orthogonal spline collocation with piecewise Hermite bicubics is applied to the Dirichlet boundary value problem for a self-adjoint elliptic partial differential equation on a rectangle. Additive and multiplicative preconditioners are defined respectively as sums and products of independent operators on a sequence of nested subspaces of the fine partition approximation space. A general theory of additive and multiplicative Schwarz methods is used to prove that the preconditioners are spectrally equivalent to the collocation discretization of the Laplacian with the spectral constants independent of the fine partition stepsize and the number of levels. The preconditioned conjugate gradient and preconditioned Orthomin methods are considered for the solution of collocation problems. An implementation of the methods is discussed and the results of numerical experiments are presented.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 50 条