Time-dependent diffusion in tubes with periodic partitions

被引:40
|
作者
Makhnovskii, Yu A. [1 ]
Berezhkovskii, A. M. [2 ]
Zitserman, V. Yu. [3 ]
机构
[1] Russian Acad Sci, AV Topchiev Petrochem Synth Inst, Moscow 117912, Russia
[2] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA
[3] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 131卷 / 10期
关键词
BOUNDARY HOMOGENIZATION; RELEASE; PORE; WATER;
D O I
10.1063/1.3224954
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The presence of obstacles leads to a slowdown of diffusion. We study the slowdown when diffusion occurs in a tube, and obstacles are periodically spaced identical partitions with circular apertures of arbitrary radius in their centers. The mean squared displacement of a particle diffusing in such a system at large times is given by <Delta x(2)(t)>=2D(eff)t, t -> infinity, where D-eff is the effective diffusion coefficient, which is smaller than the particle diffusion coefficient in the tube with no partitions, D-0. The latter characterizes the short-time behavior of the mean squared displacement, <Delta x(2)(t)>=2D(0)t, t -> 0. Thus, the particle diffusion coefficient decreases from D-0 to D-eff as time goes from zero to infinity. We derive analytical solutions for the Laplace transforms of the time-dependent diffusion coefficient and the mean squared displacement that show how these functions depend on the geometric parameters of the tube. To obtain these solutions we replace nonuniform partitions with apertures by effective partitions that are uniformly permeable for diffusing particles. Our choice of the partition permeability is based on the recent result for the corresponding effective trapping rate obtained by means of boundary homogenization. To establish the range of applicability of our approximate theory we compare its predictions with the results found in Brownian dynamics simulations. Comparison shows excellent agreement between the two at arbitrary value of the aperture radius when the tube radius does not exceed the interpartition distance. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3224954]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Time-dependent diffusion coefficients in periodic porous materials
    Dudko, OK
    Berezhkovskii, AM
    Weiss, GH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (45): : 21296 - 21299
  • [2] Homogenization in a periodic and time-dependent potential
    Garnier, J
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (01) : 95 - 111
  • [3] FRACTIONAL DIFFUSION WITH TIME-DEPENDENT DIFFUSION COEFFICIENT
    Costa, F. S.
    De Oliveira, E. Capelas
    Plata, Adrian R. G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 59 - 79
  • [4] Bulge initiation in tubes of time-dependent materials
    Wineman, Alan S.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (04) : 636 - 648
  • [5] REACTION-DIFFUSION PROBLEMS ON TIME-DEPENDENT RIEMANNIAN MANIFOLDS: STABILITY OF PERIODIC SOLUTIONS
    Bandle, C.
    Monticelli, D. D.
    Punzo, F.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 6082 - 6099
  • [6] Time-dependent diffusion in A-stars
    Alecian, G
    PROCEEDINGS OF THE 26TH MEETING AND WORKSHOP OF THE EUROPEAN WORKING GROUP ON CP STARS, 1998, 27 (03): : 290 - 295
  • [7] Time-Dependent Diffusion in Prostate Cancer
    Lemberskiy, Gregory
    Rosenkrantz, Andrew B.
    Veraart, Jelle
    Taneja, Samir S.
    Novikov, Dmitry S.
    Fieremans, Els
    INVESTIGATIVE RADIOLOGY, 2017, 52 (07) : 405 - 411
  • [8] Diffusion through time-dependent media
    Holschneider, M
    Gensane, O
    Le Mouël, JL
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (02) : 299 - 306
  • [9] Time-dependent diffusion in stellar atmospheres
    Alecian, G.
    Stift, M. J.
    Dorfi, E. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (02) : 986 - 997
  • [10] TIME-DEPENDENT AMBIPOLAR DIFFUSION WAVES
    SHIMONY, Z
    CHAN, JH
    PHYSICS OF FLUIDS, 1965, 8 (09) : 1704 - &