Local resilience of the 1T-TiSe2 charge density wave to Ti self-doping

被引:17
|
作者
Hildebrand, B. [1 ,2 ]
Jaouen, T. [1 ,2 ]
Didiot, C. [1 ,2 ]
Razzoli, E. [1 ,2 ]
Monney, G. [1 ,2 ]
Mottas, M. -L. [1 ,2 ]
Vanini, F. [1 ,2 ]
Barreteau, C. [3 ]
Ubaldini, A. [3 ]
Giannini, E. [3 ]
Berger, H. [4 ]
Bowler, D. R. [5 ,6 ]
Aebi, P. [1 ,2 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Univ Fribourg, Fribourg Ctr Nanomat, CH-1700 Fribourg, Switzerland
[3] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
[4] Ecole Polytech Fed Lausanne, Inst Genie Atom, CH-1015 Lausanne, Switzerland
[5] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
[6] UCL, Dept Phys & Astron, London WC1E 6BT, England
关键词
TRANSITION-METAL DICHALCOGENIDES; SUPERCONDUCTIVITY; DYNAMICS; ORIGIN;
D O I
10.1103/PhysRevB.95.081104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In Ti-intercalated self-doped 1T-TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the long-range phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the 1T-TiSe2 CDW reveals an entangled mechanism between CDW, periodic lattice distortion, and induced nonequivalent defects.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Origin of the charge density wave in 1T-TiSe2
    Zhu, Zhiyong
    Cheng, Yingchun
    Schwingenschloegl, Udo
    PHYSICAL REVIEW B, 2012, 85 (24):
  • [2] Doping stability and charge-density-wave transition of strained 1T-TiSe2
    Fu, Zhen-Guo
    Wang, Jian-Hao
    Yang, Yu
    Yang, Wei
    Liu, Li-Li
    Hu, Zi-Yu
    Zhang, Ping
    EPL, 2017, 120 (01)
  • [3] Resistivity anisotropy and charge density wave in 1T-TiSe2
    Nader, A.
    LeBlanc, A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (04) : 363 - 366
  • [4] The chiral charge density wave transition in 1T-TiSe2
    van Wezel, Jasper
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2011), 2012, 391
  • [5] Anisotropic charge density wave in layered 1T-TiSe2
    Qiao, Qiao
    Zhou, Songsong
    Tao, Jing
    Zheng, Jin-Cheng
    Wu, Lijun
    Ciocys, Samuel T.
    Iavarone, Maria
    Srolovitz, David J.
    Karapetrov, Goran
    Zhu, Yimei
    PHYSICAL REVIEW MATERIALS, 2017, 1 (05):
  • [6] Resistivity anisotropy and charge density wave in 1T-TiSe2
    A Nader
    A LeBlanc
    Indian Journal of Physics, 2013, 87 : 363 - 366
  • [7] Dichotomy of metallic electron density and charge density wave in 1T-TiSe2
    Jeong, Dongjoon
    Kim, Jimin
    Jin, Kyung-Hwan
    Kim, Jaeyoung
    Yeom, Han Woong
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [8] Charge-density-wave melted superconductivity in 1T-TiSe2
    Hu, Q.
    Liu, J. Y.
    Shi, Q.
    Zhang, F. J.
    Zhong, Y.
    Lei, L.
    Ang, R.
    EPL, 2021, 135 (05)
  • [9] Stable charge density wave phase in a 1T-TiSe2 monolayer
    Singh, Bahadur
    Hsu, Chuang-Han
    Tsai, Wei-Feng
    Pereira, Vitor M.
    Lin, Hsin
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [10] Charge density wave hampers exciton condensation in 1T-TiSe2
    Lian, Chao
    Ali, Zulfikhar A.
    Wong, Bryan M.
    PHYSICAL REVIEW B, 2019, 100 (20)