Homogenization of the wave equation in composites with imperfect interface:: A memory effect

被引:29
|
作者
Donato, Patrizia
Faella, Luisa
Monsurro, Sara
机构
[1] Univ Rouen, CNRS, UMR 6085, Lab Math Raphael Salem, F-76801 St Etienne, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
[3] Univ Cassino, Dipartimento Automaz Elettromagnetismo Ingn Infor, I-03043 Cassino, FR, Italy
[4] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
来源
关键词
periodic homogenization; wave equation; interface problem; CONTACT RESISTANCE; DIFFUSION; MODEL;
D O I
10.1016/j.matpur.2006.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behaviour of the wave equation with rapidly oscillating coefficients in a two-component composite with epsilon-periodic imperfect inclusions. We prescribe on the interface between the two components a jump of the solution proportional to the conormal derivatives through a function of order epsilon(gamma). For the different values of gamma, we obtain different limit problems. In particular, for gamma = 1 we have a linear memory effect in the homogenized problem. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:119 / 143
页数:25
相关论文
共 50 条
  • [1] Adaptive affine homogenization method for Visco-hyperelastic composites with imperfect interface
    Kim, Youngsoo
    Jung, Jiyoung
    Lee, Sangryun
    Doghri, Issam
    Ryu, Seunghwa
    APPLIED MATHEMATICAL MODELLING, 2022, 107 : 72 - 84
  • [2] Adaptive affine homogenization method for Visco-hyperelastic composites with imperfect interface
    Kim, Youngsoo
    Jung, Jiyoung
    Lee, Sangryun
    Doghri, Issam
    Ryu, Seunghwa
    Applied Mathematical Modelling, 2022, 107 : 72 - 84
  • [3] HOMOGENIZATION OF A PARABOLIC PROBLEM WITH AN IMPERFECT INTERFACE
    Jose, Editha C.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (03): : 189 - 222
  • [4] Composites with imperfect interface
    Lipton, R
    Vernescu, B
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1945): : 329 - 358
  • [5] Homogenization of a thermoelasticity model for a composite with imperfect interface
    Ene, Horia I.
    Timofte, Claudia
    Tentea, Iulian
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (02): : 147 - 160
  • [6] HOMOGENIZATION AND EXACT CONTROLLABILITY FOR PROBLEMS WITH IMPERFECT INTERFACE
    Monsurro, Sara
    Perugia, Carmen
    NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (02) : 411 - 444
  • [7] CRACK IN AN IMPERFECT INTERFACE IN COMPOSITES
    KAW, AK
    DAS, VG
    MECHANICS OF MATERIALS, 1991, 11 (04) : 295 - 322
  • [8] On the Homogenization of a Damped Wave Equation
    Timofte, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 543 - 550
  • [9] Effect of inclusion shape on the effective elastic moduli for composites with imperfect interface
    Tong, J
    Nan, CW
    Fu, J
    Guan, X
    ACTA MECHANICA, 2001, 146 (3-4) : 127 - 134
  • [10] Effect of inclusion shape on the effective elastic moduli for composites with imperfect interface
    J. Tong
    C. -W. Nan
    J. Fu
    X. Guan
    Acta Mechanica, 2001, 146 : 127 - 134