Elementary Cellular Automata along with Delay Sensitivity Can Model Communal Riot Dynamics

被引:2
|
作者
Roy, Souvik [1 ]
Das, Sukanta [1 ]
Mukherjee, Abhik [2 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Informat Technol, Shibpur Howrah 711103, W Bengal, India
[2] Indian Inst Engn Sci & Technol, Comp Sci & Technol, Shibpur Howrah 711103, W Bengal, India
来源
COMPLEX SYSTEMS | 2022年 / 31卷 / 03期
关键词
elementary cellular automata (ECAs); delay; probabilistic loss of information; phase transition; riot dynamics; DIFFUSION; PATTERNS; CONTAGION; CHAOS;
D O I
10.25088/ComplexSystems.31.3.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explores the potential of elementary cellular automata to model the dynamics of riot. Here, to model such dynamics, we introduce probabilistic loss of information and delay perturbation in the updating scheme of automata to capture sociological parameterspresence of anti-riot population and organizational presence of communal forces in the rioting society, respectively. Moreover, delay has also been incorporated in the model to capture the nonlocal interaction of neighbors. Finally, the model is verified by an event of riot that occurred in Baduria of West Bengal, India.
引用
收藏
页码:341 / 361
页数:21
相关论文
共 50 条
  • [1] Elementary Cellular Automata with Memory of Delay Type
    Alonso-Sanz, Ramon
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, 2013, 8155 : 67 - 83
  • [2] On the Dynamics of Stochastic Elementary Cellular Automata
    Baetens, Jan M.
    Van der Meeren, Wouter
    De Baets, Bernard
    JOURNAL OF CELLULAR AUTOMATA, 2017, 12 (1-2) : 63 - 80
  • [3] Can cellular automata be a representative model for visual perception dynamics?
    Beigzadeh, Maryam
    Golpayegani, Seyyed Mohammad R. Hashemi
    Gharibzadeh, Shahriar
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [4] Asymptotic (a)Synchronism Sensitivity and Complexity of Elementary Cellular Automata
    Leiva, Isabel Donoso
    Goles, Eric
    Rios-Wilson, Martin
    Sene, Sylvain
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 272 - 286
  • [5] Symbolics dynamics of elementary cellular automata rule 88
    Fang-Fang Chen
    Fang-Yue Chen
    Guan-Rong Chen
    Wei-Feng Jin
    Lin Chen
    Nonlinear Dynamics, 2009, 58 : 431 - 442
  • [6] Investigating topological chaos by elementary cellular automata dynamics
    Cattaneo, G
    Finelli, M
    Margara, L
    THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 219 - 241
  • [7] Symbolics dynamics of elementary cellular automata rule 88
    Chen, Fang-Fang
    Chen, Fang-Yue
    Chen, Guan-Rong
    Jin, Wei-Feng
    Chen, Lin
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 431 - 442
  • [8] Impact of time delay on the dynamics of SEIR epidemic model using cellular automata
    Sharma, Natasha
    Gupta, Arvind Kumar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 471 : 114 - 125
  • [9] Directional dynamics along arbitrary curves in cellular automata
    Delacourt, M.
    Poupet, V.
    Sablik, M.
    Theyssier, G.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (30) : 3800 - 3821
  • [10] A Model of City Traffic Based on Elementary Cellular Automata
    Rosenblueth, David A.
    Gershenson, Carlos
    COMPLEX SYSTEMS, 2011, 19 (04): : 305 - 322