An approximate roe-type Riemann solver for a class of realizable second order closures

被引:12
|
作者
Brun, G
Hérard, JM
Jeandel, D
Uhlmann, M
机构
[1] Elect France, DER, LNH, F-78400 Chatou, France
[2] Soc METRAFLU, F-69134 Ecully, France
[3] Ecole Cent Lyon, LMFA, F-69131 Ecully, France
关键词
turbulent flow; compressible fluid; second-moment closure; realizability; entropy condition; non-conservative hyperbolic system; Riemann problem; finite volume; shock tube;
D O I
10.1080/10618560008940900
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A realizable, objective second-moment turbulence closure, allowing for an entropy characterisation, is analyzed with respect to its convective subset. The distinct characteristic wave system of these equations in non-conservation form is exposed. An approximate solution to the associated one-dimensional Riemann problem is constructed making use of approximate jump conditions obtained by assuming a linear path across shock waves. A numerical integration method based on a new approximate Riemann solver (flux-difference-splitting) is proposed for use in conjunction with either unstructured or structured grids. Test calculations of quasi one-dimensional flow cases demonstrate the feasibility of the current technique even where Euler-based approaches fail.
引用
收藏
页码:223 / 249
页数:27
相关论文
共 50 条
  • [1] An Approximate Riemann Solver for Second-Moment Closures
    Brun, G.
    Hérard, J.-M.
    Jeandel, D.
    Uhlmann, M.
    Journal of Computational Physics, 2000, 151 (02): : 990 - 996
  • [2] An approximate Riemann solver for second-moment closures
    Brun, G
    Hérard, JM
    Jeandel, D
    Uhlmann, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) : 990 - 996
  • [3] A Roe-type Riemann Solver Based on the Spectral Decomposition of the Equations of Relativistic Magnetohydrodynamics
    Ma Ibanez, Jose
    Aloy, Miguel A.
    Mimica, Petar
    Anton, Luis
    Miralles, Juan A.
    Ma Marti, Jose
    NUMERICAL MODELING OF SPACE PLASMA FLOWS - ASTRONUM 2010, 2011, 444 : 217 - +
  • [4] FINITE-VOLUME APPROXIMATION OF 2 PHASE-FLUID FLOWS BASED ON AN APPROXIMATE ROE-TYPE RIEMANN SOLVER
    SAINSAULIEU, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 121 (01) : 1 - 28
  • [5] Robust and accurate Roe-type Riemann solver with compact stencil: Rotated-RoeM scheme
    Choi, Seongyu
    Kim, Donguk
    Park, Jaehyong
    Park, Jin Seok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 505
  • [6] Roe-type Riemann solver for gas-liquid flows using drift-flux model with an approximate form of the Jacobian matrix
    da Silva Santim, Christiano Garcia
    Rosa, Eugenio Spano
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 80 (09) : 536 - 568
  • [7] A carbuncle free roe-type solver for the Euler equations
    Kemm, F.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 601 - 608
  • [8] Roe-type Riemann solvers for general hyperbolic systems
    Castro, Cristobal E.
    Toro, Eleuterio F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (07) : 467 - 486
  • [9] A roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition
    François Bereux
    Lionel Sainsaulieu
    Numerische Mathematik, 1997, 77 : 143 - 185
  • [10] A roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition
    Bereux, F
    Sainsaulieu, L
    NUMERISCHE MATHEMATIK, 1997, 77 (02) : 143 - 185