From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance

被引:93
|
作者
Serbin, Shawn P. [1 ]
Wu, Jin [1 ,2 ]
Ely, Kim S. [1 ]
Kruger, Eric L. [3 ]
Townsend, Philip A. [3 ]
Meng, Ran [1 ,4 ]
Wolfe, Brett T. [5 ,6 ]
Chlus, Adam [3 ]
Wang, Zhihui [3 ]
Rogers, Alistair [1 ]
机构
[1] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA
[2] Univ Hong Kong, Sch Biol Sci, Pokfulam, Hong Kong, Peoples R China
[3] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA
[4] Huazhong Agr Univ, Coll Nat Resources & Environm, Wuhan, Hubei, Peoples R China
[5] Smithsonian Trop Res Inst, Apartado 0843-03092, Balboa, Panama
[6] Louisiana State Univ, Sch Renewable Nat Resources, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会; 美国能源部;
关键词
leaf mass area; partial least-squares regression (PLSR); plant traits; remote sensing; specific leaf area; spectroscopy; EARTH SYSTEM MODELS; IMAGING SPECTROSCOPY; PHYSIOLOGICAL TRAITS; SPECTRAL REFLECTANCE; CHLOROPHYLL CONTENT; SQUARES REGRESSION; BIOCHEMICAL TRAITS; VEGETATION MODEL; WIDE-RANGE; PLANT;
D O I
10.1111/nph.16123
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long-standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking. We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m(-2). Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad- and needleleaf species, and upper- and lower-canopy (i.e. sun and shade) growth environments. Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R-2 = 0.89; root mean square error (RMSE) = 15.45 g m(-2)). Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.
引用
收藏
页码:1557 / 1568
页数:12
相关论文
共 50 条
  • [1] Estimating leaf mass per area with leaf radiative transfer model
    Shi, Hanyu
    Jiang, Jingyi
    Jacquemoud, Stephane
    Xiao, Zhiqiang
    Ma, Mingguo
    REMOTE SENSING OF ENVIRONMENT, 2023, 286
  • [2] WAVELET-BASED PROSPECT INVERSION FOR RETRIEVING LEAF MASS PER AREA (LMA) AND EQUIVALENT WATER THICKNESS (EWT) FROM LEAF REFLECTANCE
    Li, Dong
    Cheng, Tao
    Yao, Xia
    Zhang, Zhaoying
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6910 - 6913
  • [3] Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis
    Cheng, Tao
    Rivard, Benoit
    Sanchez-Azofeifa, Arturo G.
    Feret, Jean-Baptiste
    Jacquemoud, Stephane
    Ustin, Susan L.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 : 28 - 38
  • [4] The anatomical and compositional basis of leaf mass per area
    John, Grace P.
    Scoffoni, Christine
    Buckley, Thomas N.
    Villar, Rafael
    Poorter, Hendrik
    Sack, Lawren
    ECOLOGY LETTERS, 2017, 20 (04) : 412 - 425
  • [5] Improved random patches and model transfer for deriving leaf mass per area across multispecies from spectral reflectance
    Fei, Shuaipeng
    Xiao, Shunfu
    Xu, Demin
    Shu, Meiyan
    Sun, Hong
    Feng, Puyu
    Xiao, Yonggui
    Ma, Yuntao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 218
  • [6] SELECTING HYPERSPECTRAL BANDS FOR LEAF MASS PER AREA PREDICTION BY MEANS OF NEURAL NETWORKS
    Baskiotis, Catherine
    Aval, Josselin
    El Bouz, Marwa
    Al Falou, Ayman
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1408 - 1411
  • [7] An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants
    Flores, Olivier
    Garnier, Eric
    Wright, Ian J.
    Reich, Peter B.
    Pierce, Simon
    Diaz, Sandra
    Pakeman, Robin J.
    Rusch, Graciela M.
    Bernard-Verdier, Maud
    Testi, Baptiste
    Bakker, Jan P.
    Bekker, Renee M.
    Cerabolini, Bruno E. L.
    Ceriani, Roberta M.
    Cornu, Guillaume
    Cruz, Pablo
    Delcamp, Matthieu
    Dolezal, Jiri
    Eriksson, Ove
    Fayolle, Adeline
    Freitas, Helena
    Golodets, Carly
    Gourlet-Fleury, Sylvie
    Hodgson, John G.
    Brusa, Guido
    Kleyer, Michael
    Kunzmann, Dieter
    Lavorel, Sandra
    Papanastasis, Vasilios P.
    Perez-Harguindeguy, Natalia
    Vendramini, Fernanda
    Weiher, Evan
    ECOLOGY AND EVOLUTION, 2014, 4 (14): : 2799 - 2811
  • [8] Estimating canopy light interception and absorption using leaf mass per unit leaf area in Solanum melongena
    Rosati, A
    Badeck, FW
    Dejong, TM
    ANNALS OF BOTANY, 2001, 88 (01) : 101 - 109
  • [9] Reconstructing Terrestrial Paleoclimate and Paleoecology with Fossil Leaves Using Digital Leaf Physiognomy and Leaf Mass Per Area
    Lowe, Alexander J.
    Flynn, Andrew G.
    Butrim, Matthew J.
    Baumgartner, Aly
    Royer, Dana L.
    Peppe, Daniel J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (212):
  • [10] Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model
    Eyster, Harold N.
    Beckage, Brian
    ATMOSPHERE, 2023, 14 (03)