Completing symplectic matrices

被引:1
|
作者
Spiegel, E [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
hyperbolic plane; symplectic group; Witt's theorem;
D O I
10.1016/S0024-3795(00)00081-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field of characteristic not equal 2, V a non-singular 2n-dimensional symplectic space over F, nu(1), nu(2),..., nu(2n) a basis for V, and Sp(n)(F) the collection of symplectic isometries of V with respect to this basis. We consider the following completion question: If A is any n x n F-matrix, must there be some D is an element of Sp(2n) (F) with D = (A * ) * *) It is shown that for some particular important choices of bases, the answer is yes, but it does not hold in general. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [1] DECOMPOSITION OF SYMPLECTIC MATRICES INTO PRODUCTS OF SYMPLECTIC UNIPOTENT MATRICES OF INDEX 2
    Hou, Xin
    Xiao, Zhengyi
    Hao, Yajing
    Yuan, Qi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 497 - 502
  • [2] A REMARK ON SYMPLECTIC MATRICES
    KOHNEN, W
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1995, 65 : 239 - 242
  • [3] Decomposition of symplectic matrices into products of commutators of symplectic involutions
    Hou, Xin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3459 - 3470
  • [4] COMPLETING UNIMODULAR ROWS TO INVERTIBLE MATRICES
    ROITMAN, M
    JOURNAL OF ALGEBRA, 1977, 49 (01) : 206 - 211
  • [5] MODIFIED METHOD OF COMPLETING FOR INVERSION OF MATRICES
    KONIGSHOFER, F
    COMPUTING, 1971, 8 (3-4) : 221 - +
  • [6] The classification of symplectic matrices and pairs
    Kuo, Yueh-Cheng
    Shieh, Shih-Feng
    You, Yi-Siang
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2019, 4 (01) : 35 - 52
  • [7] The Pfaff lattice on symplectic matrices
    Kodama, Yuji
    Pierce, Virgil U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
  • [8] Normal Forms of Symplectic Matrices
    Long Y.
    Dong D.
    Acta Mathematica Sinica, 2000, 16 (2) : 237 - 260
  • [9] A SUBSPACE ITERATION FOR SYMPLECTIC MATRICES
    Malyshev, Alexander
    Sadkane, Miloud
    Salam, Ahmed
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 43 : 213 - 222
  • [10] M-SYMPLECTIC MATRICES
    SPENCE, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 170 (AUG) : 447 - +