A 763 pW 230 pJ/Conversion Fully Integrated CMOS Temperature-to-Digital Converter With+0.81 °C/-0.75 °C Inaccuracy

被引:37
|
作者
Wang, Hui [1 ,2 ]
Mercier, Patrick P. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Capacitive charging time; complementary metal-oxide-semiconductor (CMOS) temperature sensor; fully integrated; Internet of Things (IoT); sub-nW power; temperature sensor; ultra-low-power; SENSOR; 3-SIGMA; SYSTEM; NW;
D O I
10.1109/JSSC.2019.2916418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A sub-nW fully integrated temperature sensor is presented that digitizes temperature via a capacitive charging time feedback loop controlled by a least significant bit (LSB)-first algorithm. Specifically, an ultra-low-power current reference generator charges two metal-insulator-metal (MIM) capacitors Ctop and Cbot, generating Vramp, top and Vramp, bot which are then compared to a constant with temperature (CWT) voltage and a proportional to absolute temperature (PTAT) voltage, respectively. Temperature is then digitized by matching the charging time between the Vramp, top and Vramp, bot via feedback tuning of Ctop driven by an energy-efficient digital processing unit (DPU) for direct ultra-low-power digital readout. The design is fabricated in 65 nm complementary metal-oxide-semiconductor, and measurement from 12 samples reveals a maximum temperature error of +1.61 degrees C/-1.53 degrees C (+ 0.86 degrees C/-0.83 degrees C) and + 0.81 degrees C/-0.75 degrees C when operating from 0 degrees C to 100 degrees C after two-point (three-point) calibration without and with trimming, respectively. Operating from a 0.5 V supply, the 12 samples consumed an average power of 763 pW at 20 degrees C, which after a 0.3 s conversion time results in 230 pJ/conversion.
引用
收藏
页码:2281 / 2290
页数:10
相关论文
共 7 条
  • [1] A 950-pW, 39-pJ/Conversion Leakage-Based Temperature-to-Digital Converter With 43mk Resolution
    Shao, Cheng-Ze
    Liao, Yu-Te
    2020 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2020,
  • [2] A BJT-Based Temperature-to-Digital Converter With ±60 mK (3σ) Inaccuracy From-55 °C to+125 °C in 0.16-μm CMOS
    Yousefzadeh, Bahman
    Shalmany, Saleh Heidary
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) : 1044 - 1052
  • [3] A BJT-based Temperature-to-Digital Converter with ±60mK (3σ) Inaccuracy from-70°C to 125°C in 160nm CMOS
    Yousefzadeh, Bahman
    Shalmany, Saleh Heidary
    Makinwa, Kofi
    2016 IEEE SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), 2016,
  • [4] An Energy-Efficient BJT-Based Temperature-to-Digital Converter with ±0.13 °C (3σ) Inaccuracy from-40 to 125°C
    Kumar, Rushil K.
    Jiang, Hui
    Makinwa, Kofi A. A.
    2019 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2019, : 107 - 108
  • [5] A BJT-Based Temperature-to-Digital Converter With a 0.25 C 3 $\sigma$ -Inaccuracy From-40 C to 180 C Using Heater-Assisted Voltage Calibration
    Yousefzadeh, Bahman
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (02) : 369 - 377
  • [6] A 640 pW 22 pJ/sample Gate Leakage-Based Digital CMOS Temperature Sensor with 0.25°C Resolution
    Truesdell, Daniel S.
    Calhoun, Benton H.
    2019 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2019,
  • [7] A Temperature Sensor with 3σ Inaccuracy of+0.5/-0.75 °C and Energy per Conversion of 0.65 μJ Using a 0.18 μm CMOS Technology
    Yucetas, Mikail
    Pulkkinen, Mika
    Gronicz, Jakub
    Halonen, Kari
    2013 NORCHIP, 2013,