Notch Pathway Modulation on Bone Marrow-Derived Vascular Precursor Cells Regulates Their Angiogenic and Wound Healing Potential

被引:34
作者
Caiado, Francisco [1 ,2 ]
Real, Carla [1 ,2 ]
Carvalho, Tania [1 ,2 ]
Dias, Sergio [1 ,2 ,3 ]
机构
[1] Portuguese Inst Oncol, CIPM, Angiogenesis Lab, Lisbon, Portugal
[2] Inst Gulbenkian Ciencias, Oeiras, Portugal
[3] Inst Med Mol, Lisbon, Portugal
关键词
D O I
10.1371/journal.pone.0003752
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone marrow (BM) derived vascular precursor cells (BM-PC, endothelial progenitors) are involved in normal and malignant angiogenesis, in ischemia and in wound healing. However, the mechanisms by which BM-PC stimulate the pre-existing endothelial cells at sites of vascular remodelling/recovery, and their contribution towards the formation of new blood vessels are still undisclosed. In the present report, we exploited the possibility that members of the Notch signalling pathway, expressed by BM-PC during endothelial differentiation, might regulate their pro-angiogenic or pro-wound healing properties. We demonstrate that Notch pathway modulates the adhesion of BM-PC to extracellular matrix (ECM) in vitro via regulation of integrin alpha3beta1; and that Notch pathway inhibition on BM-PC impairs their capacity to stimulate endothelial cell tube formation on matrigel and to promote endothelial monolayer recovery following wounding in vitro. Moreover, we show that activation of Notch pathway on BM-PC improved wound healing in vivo through angiogenesis induction. Conversely, inoculation of BM-PC pre-treated with a gamma secretase inhibitor (GSI) into wounded mice failed to induce angiogenesis at the wound site and did not promote wound healing, presumably due to a lower frequency of BM-PC at the wound area. Our data suggests that Notch pathway regulates BM-PC adhesion to ECM at sites of vascular repair and that it also regulates the capacity of BM-PC to stimulate angiogenesis and to promote wound healing. Drug targeting of the Notch pathway on BM-PC may thus represent a novel strategy to modulate neo-angiogenesis and vessel repair.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[2]   Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling [J].
Asai, Jun ;
Takenaka, Hideya ;
Kusano, Kengo F. ;
Ii, Masaaki ;
Luedemann, Corinne ;
Curry, Cynthia ;
Eaton, Elizabeth ;
Iwakura, Atsushi ;
Tsutsumi, Yoshiaki ;
Hamada, Hiromichi ;
Kishimoto, Saburo ;
Thorne, Tina ;
Kishore, Raj ;
Losordo, Douglas W. .
CIRCULATION, 2006, 113 (20) :2413-2424
[3]   Cellular abnormalities of blood vessels as targets in cancer [J].
Baluk, P ;
Hashizume, H ;
McDonald, DM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (01) :102-111
[4]   Cellular and molecular basis of wound healing in diabetes [J].
Brem, Harold ;
Tomic-Canic, Marjana .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (05) :1219-1222
[5]   Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing [J].
Chen, Liwen ;
Tredget, Edward E. ;
Wu, Philip Y. G. ;
Wu, Yaojiong .
PLOS ONE, 2008, 3 (04)
[6]   Involvement of Notch Signaling in Wound Healing [J].
Chigurupati, Srinivasulu ;
Arumugam, Thiruma V. ;
Son, Tae Gen ;
Lathia, Justin D. ;
Jameel, Shafaq ;
Mughal, Mohamed R. ;
Tang, Sung-Chun ;
Jo, Dong-Gyu ;
Camandola, Simonetta ;
Giunta, Marialuisa ;
Rakova, Irina ;
McDonnell, Nazli ;
Miele, Lucio ;
Mattson, Mark P. ;
Poosala, Suresh .
PLOS ONE, 2007, 2 (11)
[7]   Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate [J].
Diez, Holger ;
Fischer, Andreas ;
Winkler, Anja ;
Hu, Cheng-Jun ;
Hatzopoulos, Antonis K. ;
Breier, Georg ;
Gessler, Manfred .
EXPERIMENTAL CELL RESEARCH, 2007, 313 (01) :1-9
[8]   Wound healing and its impairment in the diabetic foot [J].
Falanga, V .
LANCET, 2005, 366 (9498) :1736-1743
[9]   Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α [J].
Gallagher, Katherine A. ;
Liu, Zhao-Jun ;
Xiao, Min ;
Chen, Haiying ;
Goldstein, Lee J. ;
Buerk, Donald G. ;
Nedeau, April ;
Thom, Stephen R. ;
Velazquez, Omaida C. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (05) :1249-1259
[10]  
Gillitzer R, 2001, J LEUKOCYTE BIOL, V69, P513