A true random number generator architecture based on a reduced number of FPGA primitives

被引:25
|
作者
Stanchieri, Guido Di Patrizio [1 ]
De Marcellis, Andrea [1 ]
Palange, Elia [1 ]
Faccio, Marco [1 ]
机构
[1] Univ Aquila, Biomed Elect & Photon Integrated Syst BEPIS Lab, Dept Ind & Informat Engn & Econ, I-67100 Laquila, Italy
关键词
True random number generator; FPGA-based architecture; Network security; Cybersecurity; Internet-of-Things; Industrial-Internet-of-Things; IMPLEMENTATION;
D O I
10.1016/j.aeue.2019.03.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on the design, realization and characterization of a True Random Number Generator (TRNG) that operates using as seeds of entropy, the jitter and the metastability introduced by primitives of a Field Programmable Gate Arrays (FPGA) board. In particular, the TRNG architecture has been implemented on a Xilinx Ultrascale XCKU040 FPGA board. Generally, the implementations on FPGA of fully digital TRNGs make use of ring oscillators employing a large number of Look-Up-Table (LUT) blocks. Differently from this approach, this paper demonstrates that a reliable FPGA-based TRNG architecture can be realized mainly employing only a single PLL and three on-board primitives together with other few basic logic elements (i.e., 8 D-type Flip-Flop, 17 LUT and 2 Counters) used only for the initial overall system synchronization and post-processing operations. In this way, the proposed solution largely reduces the employed number of the FPGA Configurable Logic Blocks (CLB), the circuitry complexity and the overall power consumption without affecting the achievable output bit rate so resulting suitable for full-custom VLSI implementations. The random and statistical properties of the generated 100 Mbps output bitstreams have been validated by passing all the National Institute of Standards and Technology (NIST) tests as well as the Anderson-Darling and the Kolmogorov-Smirnov tests so demonstrating that the proposed TRNG architecture can be suitably employed in security/cybersecurity network systems as well as, once integrated, in Internet-of-Things (loT) and Industrial-Internet-of-Things (IIoT) applications. (C) 2019 Elsevier GmbH. All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [1] An FPGA-Based Architecture of True Random Number Generator for Network Security Applications
    Stanchieri, Guido Di Patrizio
    De Marcellis, Andrea
    Faccio, Marco
    Palange, Elia
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [2] A Metastability-Based True Random Number Generator on FPGA
    Li, Chaoyang
    Wang, Qin
    Jiang, Jianfei
    Guan, Nin
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 738 - 741
  • [3] High Speed True Random Number Generator Based on FPGA
    Xu, Xiufeng
    Wang, Yuyang
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS ENGINEERING (ICISE), 2016, : 18 - 21
  • [4] Research of True Random Number Generator Based on PLL at FPGA
    Li Dejun
    Pei Zhen
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2432 - 2437
  • [5] Study on a True Random Number Generator design for FPGA
    Tarsa, Ionut Gabriel
    Budariu, Gigi-Daniel
    Grozea, Constantin
    PROCEEDINGS OF THE 2010 8TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2010, : 461 - 464
  • [6] FPGA VENDOR AGNOSTIC TRUE RANDOM NUMBER GENERATOR
    Schellekens, Dries
    Preneel, Bart
    Verbauwhede, Ingrid
    2006 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2006, : 139 - 144
  • [7] Design of a true random number generator using FPGA
    Huo, Wenjie
    Liu, Zhenglin
    Chen, Yicheng
    Zou, Xuecheng
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37 (01): : 73 - 76
  • [8] Design and Implementation of Chaos Based True Random Number Generator on FPGA
    Koyuncu, Ismail
    Ozcerit, Ahmet Turan
    Pehlivan, Ihsan
    Avaroglu, Erdinc
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 236 - 239
  • [9] FPGA Implementation of Metastability-Based True Random Number Generator
    Hata, Hisashi
    Ichiawa, Shuichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (02): : 426 - 436
  • [10] Harvard architecture based post processed True random number generator
    Saranya, M.
    Revathy, M.
    Rahuman, A. Kaleel
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 135 - 138