A Novel Machine Learning-assisted Pairs Trading Approach for Trading Risk Reduction

被引:0
|
作者
Chen, Zichao [1 ,2 ]
Wang, Cara [1 ,2 ]
Sun, Peng [1 ]
机构
[1] Duke Kunshan Univ, Suzhou, Peoples R China
[2] Duke Univ, Durham, NC 27708 USA
关键词
Artificial Intelligence; Pairs trading; risk management; cryptocurrency; stock market;
D O I
10.1109/iGETblockchain56591.2022.10087166
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cryptocurrency market has been growing rapidly in recent years. The volume of transactions and the number of participants in the cryptocurrency market makes it huge enough that we cannot ignore it. At the same time, the global stock market has also reached a new height in the past two years. However, due to the COVID epidemic and other political and economic-related factors in the last two years, the uncertainty in the capital market remains high, and shortterm large fluctuations occur frequently; thus, many investors have suffered substantial losses. Pairs trading, an advanced statistical arbitrage method, is believed to hedge the risk and profit off the market regardless of market condition. Amongst the vast literature on pairs trading, there have been investors trading a pair of cryptocurrencies or a pair of stocks using machine learning or empirical methods. This research probes the boundary of utilizing machine learning methods to do pairs trading with one stock asset and another cryptocurrency. Briefly, we built an assets pool with both stocks and cryptocurrencies to find the best trading pair. In addition, we applied mainstream machine learning models to the trading strategy. We finally evaluated the accuracy of the proposed method in prediction and compared their returns based on the actual U.S. Stock and Cryptocurrency Market data. The test results show that our method outperforms other state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine Learning-Enhanced Pairs Trading
    Hadad, Eli
    Hodarkar, Sohail
    Lemeneh, Beakal
    Shasha, Dennis
    FORECASTING, 2024, 6 (02): : 434 - 455
  • [2] Enhancing a Pairs Trading strategy with the application of Machine Learning
    Sarmento, Simao Moraes
    Horta, Nuno
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 158
  • [3] Machine Learning and Algorithmic Pairs Trading in Futures Markets
    Baek, Seungho
    Glambosky, Mina
    Oh, Seok Hee
    Lee, Jeong
    SUSTAINABILITY, 2020, 12 (17)
  • [4] Pairs trading on different portfolios based on machine learning
    Chang, Victor
    Man, Xiaowen
    Xu, Qianwen
    Hsu, Ching-Hsien
    EXPERT SYSTEMS, 2021, 38 (03)
  • [5] Prediction of the Profitability of Pairs Trading Strategy Using Machine Learning
    Jirapongpan, Ronnachai
    Phumchusri, Naragain
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020), 2020, : 1025 - 1030
  • [6] UNSURE - A machine learning approach to cryptocurrency trading
    Kochliaridis, Vasileios
    Papadopoulou, Anastasia
    Vlahavas, Ioannis
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5688 - 5710
  • [7] Pairs trading via unsupervised learning
    Han, Chulwoo
    He, Zhaodong
    Toh, Alenson Jun Wei
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 307 (02) : 929 - 947
  • [8] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [9] A Cooperative Dynamic Approach to Pairs Trading
    Ramos-Requena, J. P.
    Lopez-Garcia, M. N.
    Sanchez-Granero, M. A.
    Trinidad-Segovia, J. E.
    COMPLEXITY, 2021, 2021
  • [10] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    PHARMACEUTICS, 2022, 14 (02)