General relativistic magnetohydrodynamical simulations of the jet in M87

被引:220
作者
Moscibrodzka, Monika [1 ]
Falcke, Heino [1 ,2 ]
Shiokawa, Hotaka [3 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands
[2] ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands
[3] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
关键词
accretion; accretion disks; black hole physics; relativistic processes; galaxies: jets; galaxies: nuclei; SUPERMASSIVE BLACK-HOLE; SGR A-ASTERISK; FUNDAMENTAL PLANE; GRMHD SIMULATIONS; ACCRETION FLOWS; RADIO; LUMINOSITY; SPECTRUM; MODELS; EMISSION;
D O I
10.1051/0004-6361/201526630
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The connection between black hole, accretion disk, and radio jet can be constrained best by fitting models to observations of nearby low-luminosity galactic nuclei, in particular the well-studied sources Sgr A* and M87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Aims. Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M87. Methods. We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient in these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. Results. We find that the radio emission in M87 is described well by a combination of a two-temperature accretion flow and a hot single-temperature jet. Most of the radio emission in our simulations comes from the jet sheath. The model fits the basic observed characteristics of the M87 radio core: it is "edge-brightened", starts subluminally, has a flat spectrum, and increases in size with wavelength. The best fit model has a mass-accretion rate of (M)over dot similar to 9 x 10(-3) M-circle dot yr(-1) and a total jet power of P-j similar to 10(43) erg s(-1). Emission at lambda = 1.3mm is produced by the counter-jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. Conclusions. The model was successfully derived from one for the supermassive black hole in the center of the Milky Way by appropriately scaling mass and accretion rate. This suggests the possibility that this model could also apply to a wider range of low-luminosity black holes.
引用
收藏
页数:15
相关论文
共 45 条
[1]   FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 [J].
Abdo, A. A. ;
Ackermann, M. ;
Ajello, M. ;
Atwood, W. B. ;
Axelsson, M. ;
Baldini, L. ;
Ballet, J. ;
Barbiellini, G. ;
Bastieri, D. ;
Bechtol, K. ;
Bellazzini, R. ;
Berenji, B. ;
Blandford, R. D. ;
Bloom, E. D. ;
Bonamente, E. ;
Borgland, A. W. ;
Bregeon, J. ;
Brez, A. ;
Brigida, M. ;
Bruel, P. ;
Burnett, T. H. ;
Caliandro, G. A. ;
Cameron, R. A. ;
Cannon, A. ;
Caraveo, P. A. ;
Casandjian, J. M. ;
Cavazzuti, E. ;
Cecchi, C. ;
Celik, Oe ;
Charles, E. ;
Cheung, C. C. ;
Chiang, J. ;
Ciprini, S. ;
Claus, R. ;
Cohen-Tanugi, J. ;
Colafrancesco, S. ;
Conrad, J. ;
Costamante, L. ;
Cutini, S. ;
Davis, D. S. ;
Dermer, C. D. ;
de Angelis, A. ;
de Palma, F. ;
Digel, S. W. ;
Donato, D. ;
do Couto e Silva, E. ;
Drell, P. S. ;
Dubois, R. ;
Dumora, D. ;
Edmonds, Y. .
ASTROPHYSICAL JOURNAL, 2009, 707 (01) :55-60
[2]   Foundations of Black Hole Accretion Disk Theory [J].
Abramowicz, Marek A. ;
Fragile, P. Chris .
LIVING REVIEWS IN RELATIVITY, 2013, 16
[3]  
[Anonymous], THESIS
[4]   THE PARSEC-SCALE JET IN M87 [J].
BIRETTA, JA ;
JUNOR, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11364-11367
[5]   ELECTROMAGNETIC EXTRACTION OF ENERGY FROM KERR BLACK-HOLES [J].
BLANDFORD, RD ;
ZNAJEK, RL .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 179 (02) :433-456
[6]   RELATIVISTIC JETS AS COMPACT RADIO-SOURCES [J].
BLANDFORD, RD ;
KONIGL, A .
ASTROPHYSICAL JOURNAL, 1979, 232 (01) :34-48
[7]  
Boccardi B., 2015, ARXIV150401272
[8]   THE INTRINSIC TWO-DIMENSIONAL SIZE OF SAGITTARIUS A [J].
Bower, Geoffrey C. ;
Markoff, Sera ;
Brunthaler, Andreas ;
Law, Casey ;
Falcke, Heino ;
Maitra, Dipankar ;
Clavel, M. ;
Goldwurm, A. ;
Morris, M. R. ;
Witzel, Gunther ;
Meyer, Leo ;
Ghez, A. M. .
ASTROPHYSICAL JOURNAL, 2014, 790 (01)
[9]   IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN [J].
Broderick, Avery E. ;
Loeb, Abraham .
ASTROPHYSICAL JOURNAL, 2009, 697 (02) :1164-1179
[10]   M 87 at metre wavelengths: the LOFAR picture [J].
de Gasperin, F. ;
Orru, E. ;
Murgia, M. ;
Merloni, A. ;
Falcke, H. ;
Beck, R. ;
Beswick, R. ;
Birzan, L. ;
Bonafede, A. ;
Brueggen, M. ;
Brunetti, G. ;
Chyzy, K. ;
Conway, J. ;
Croston, J. H. ;
Ensslin, T. ;
Ferrari, C. ;
Heald, G. ;
Heidenreich, S. ;
Jackson, N. ;
Macario, G. ;
McKean, J. ;
Miley, G. ;
Morganti, R. ;
Offringa, A. ;
Pizzo, R. ;
Rafferty, D. ;
Rottgering, H. ;
Shulevski, A. ;
Steinmetz, M. ;
Tasse, C. ;
van der Tol, S. ;
van Driel, W. ;
van Weeren, R. J. ;
van Zwieten, J. E. ;
Alexov, A. ;
Anderson, J. ;
Asgekar, A. ;
Avruch, M. ;
Bell, M. ;
Bell, M. R. ;
Bentum, M. ;
Bernardi, G. ;
Best, P. ;
Breitling, F. ;
Broderick, J. W. ;
Butcher, A. ;
Ciardi, B. ;
Dettmar, R. J. ;
Eisloeffel, J. ;
Frieswijk, W. .
ASTRONOMY & ASTROPHYSICS, 2012, 547