Wigner distribution function and digital holography

被引:0
|
作者
Hennelly, Bryan M. [1 ]
Naughton, Thomas J. [1 ]
McDonald, John B. [1 ]
机构
[1] Natl Univ Ireland, Dept Comp Sci, Maynooth, Kildare, Ireland
来源
关键词
Digital Holography; Wigner Distribution Function; Space-Bandwidth Product; Generalized Sampling theorem; Dual-Shift Digital Holography;
D O I
10.1117/12.682721
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the principles of digital holography based on the Wigner distribution function (WDF). We apply the WDF to the analysis of generic optical setups which are used to record and reconstruct image Fresnel holograms. We use the graphical representation of the Wigner chart to derive various important properties, including the required space-bandwidth product of the digital hologram, CCD sampling and numerical reconstruction and the optimum required object size to optimize the system efficiency. This allows us to offer a simple comparison of the various recording schemes. The analysis also allows us to graphically compare the numerical reconstruction methods and the restrictions it may impose on the CCD parameters. We show how this insightful analysis leads us to a new method of digital holography which we call 'dual-shift' DH.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Holography and the Wigner function
    Lohmann, AW
    Testorf, ME
    Ojeda-Castañeda, J
    HOLOGRAPHY: A TRIBUTE TO YURI DENISYUK AND EMMETT LEITH, 2002, 4737 : 77 - 88
  • [2] Nearfield acoustical holography - a Wigner function approach
    Ramapriya, Deepthee Madenoor
    Gradoni, Gabriele
    Creagh, Stephen C.
    Tanner, Gregor
    Moers, Elise
    Arteaga, Ines Lopez
    JOURNAL OF SOUND AND VIBRATION, 2020, 486
  • [3] Nearfield acoustical holography – a Wigner function approach
    Ramapriya, Deepthee Madenoor
    Gradoni, Gabriele
    Creagh, Stephen C.
    Tanner, Gregor
    Moers, Elise
    Lopéz Arteaga, Inés
    Journal of Sound and Vibration, 2020, 486
  • [4] The Wigner Function as Distribution Function
    M. Revzen
    Foundations of Physics, 2006, 36 : 546 - 562
  • [5] The Wigner function as distribution function
    Revzen, M.
    FOUNDATIONS OF PHYSICS, 2006, 36 (04) : 546 - 562
  • [6] THE WIGNER DISTRIBUTION FUNCTION
    IAFRATE, GJ
    GRUBIN, HL
    FERRY, DK
    PHYSICS LETTERS A, 1982, 87 (04) : 145 - 148
  • [7] Fractional Wigner distribution function
    Dragoman, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (03) : 474 - 478
  • [8] A NOTE ON THE WIGNER DISTRIBUTION FUNCTION
    WLODARZ, JJ
    PHYSICS LETTERS A, 1988, 133 (09) : 459 - 460
  • [9] Dynamics of the τ-Wigner distribution function
    Spisak, B. J.
    Wozniak, D.
    Kolaczek, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (50)
  • [10] WIGNER DISTRIBUTION FUNCTION FOR AN OSCILLATOR
    DAVIES, RW
    DAVIES, KTR
    ANNALS OF PHYSICS, 1975, 89 (02) : 261 - 273