Permutations, signs and the Brownian bridge

被引:6
|
作者
Levental, S [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
permutations; signs; the Brownian bridge;
D O I
10.1016/S0167-7152(99)00112-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let B(t), 0 less than or equal to t less than or equal to 1 be a Brownian Bridge, and let f : [0, 1] --> {+1, -1} be a non-random, measurable function. Then for every t greater than or equal to 0 the following holds: P (max(0 less than or equal to s less than or equal to 1) \B(s)\ greater than or equal to t) less than or equal to P (max(0 less than or equal to s less than or equal to 1) \integral(0)(s) f(u) dB(u)\ greater than or equal to t) less than or equal to P (max(0 less than or equal to s less than or equal to 1) \B(s)\ greater than or equal to t/2). The result follows from a discrete-time maximal inequality for signs via weak convergence. We will present applications of this result in the area of mathematical finance. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [1] THE BROWNIAN LIMIT OF SEPARABLE PERMUTATIONS
    Bassino, Frederique
    Bouvel, Mathilde
    Feray, Valentin
    Gerin, Lucas
    Pierrot, Adeline
    ANNALS OF PROBABILITY, 2018, 46 (04): : 2134 - 2189
  • [2] Permutations, Signs, and Sum Ranges
    Chobanyan, Sergei
    Dominguez, Xabier
    Tarieladze, Vaja
    Vidal, Ricardo
    AXIOMS, 2023, 12 (08)
  • [3] RANDOM PERMUTATIONS AND BROWNIAN-MOTION
    DELAURENTIS, JM
    PITTEL, BG
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 119 (02) : 287 - 301
  • [4] Random A-permutations and Brownian motion
    Yakymiv, A. L.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 282 (01) : 298 - 318
  • [5] Random A-permutations and Brownian motion
    A. L. Yakymiv
    Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 298 - 318
  • [6] Brownian bridge
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03): : 325 - 332
  • [7] On the joint distribution of descents and signs of permutations
    Fulman, Jason
    Kim, Gene B.
    Lee, Sangchul
    Petersen, T. Kyle
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [8] Functionals of the Brownian Bridge
    Ortmann, Janosch
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 433 - 458
  • [9] The Brownian Bridge Process
    Kolarova, Edita
    XXVII INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, 2009, : 104 - 107
  • [10] RELATION BETWEEN BROWNIAN BRIDGE AND BROWNIAN EXCURSION
    VERVAAT, W
    ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 299 - 299