Tropical Coamoeba and Torus-Equivariant Homological Mirror Symmetry for the Projective Space

被引:15
|
作者
Futaki, Masahiro [1 ]
Ueda, Kazushi [2 ]
机构
[1] Kyoto Univ, Dept Math, Grad Sch Sci, Kyoto 6068502, Japan
[2] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
基金
英国工程与自然科学研究理事会;
关键词
DIMER MODELS;
D O I
10.1007/s00220-014-2155-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of a tropical coamoeba which gives a combinatorial description of the Fukaya category of the mirror of a toric Fano stack. We show that the polyhedral decomposition of a real n-torus into n + 1 permutohedra gives a tropical coamoeba for the mirror of the projective space , and we prove a torus-equivariant version of homological mirror symmetry for the projective space. As a corollary, we obtain homological mirror symmetry for toric orbifolds of the projective space.
引用
收藏
页码:53 / 87
页数:35
相关论文
共 18 条