Biclustering meets triadic concept analysis

被引:26
|
作者
Kaytoue, Mehdi [1 ]
Kuznetsov, Sergei O. [2 ]
Macko, Juraj [3 ]
Napoli, Amedeo [4 ]
机构
[1] Univ Lyon, CNRS, INSA Lyon, LIRIS, F-69621 Villeurbanne, France
[2] HSE, Moscow 109028, Russia
[3] Palacky Univ, Olomouc 77146, Czech Republic
[4] Lab Lorrain Rech Informat & Ses Applicat LORIA, F-54500 Vandoeuvre Les Nancy, France
关键词
Numerical biclustering; Similarity relation; Formal concept analysis; Triadic concept analysis; N-ary relations; FORMAL CONCEPT ANALYSIS; KNOWLEDGE DISCOVERY; ALGORITHM;
D O I
10.1007/s10472-013-9379-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biclustering numerical data became a popular data-mining task at the beginning of 2000's, especially for gene expression data analysis and recommender systems. A bicluster reflects a strong association between a subset of objects and a subset of attributes in a numerical object/attribute data-table. So-called biclusters of similar values can be thought as maximal sub-tables with close values. Only few methods address a complete, correct and non-redundant enumeration of such patterns, a well-known intractable problem, while no formal framework exists. We introduce important links between biclustering and Formal Concept Analysis (FCA). Indeed, FCA is known to be, among others, a methodology for biclustering binary data. Handling numerical data is not direct, and we argue that Triadic Concept Analysis (TCA), the extension of FCA to ternary relations, provides a powerful mathematical and algorithmic framework for biclustering numerical data. We discuss hence both theoretical and computational aspects on biclustering numerical data with triadic concept analysis. These results also scale to n-dimensional numerical datasets.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 50 条
  • [1] Biclustering meets triadic concept analysis
    Mehdi Kaytoue
    Sergei O. Kuznetsov
    Juraj Macko
    Amedeo Napoli
    Annals of Mathematics and Artificial Intelligence, 2014, 70 : 55 - 79
  • [2] A triadic approach to formal concept analysis
    Lehmann, F
    Wille, R
    CONCEPTUAL STRUCTURES: APPLICATIONS, IMPLEMENTATION AND THEORY, 1995, 954 : 32 - 43
  • [3] THE BASIC THEOREM OF TRIADIC CONCEPT ANALYSIS
    WILLE, R
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (02): : 149 - 158
  • [4] Biclustering Numerical Data in Formal Concept Analysis
    Kaytoue, Mehdi
    Kuznetsov, Sergei O.
    Napoli, Amedeo
    FORMAL CONCEPT ANALYSIS, 2011, 6628 : 135 - 150
  • [5] A research summary about triadic concept analysis
    Ling Wei
    Ting Qian
    Qing Wan
    Jianjun Qi
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 699 - 712
  • [6] A research summary about triadic concept analysis
    Wei, Ling
    Qian, Ting
    Wan, Qing
    Qi, Jianjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (04) : 699 - 712
  • [7] Triadic concept approximation
    Ananias, Kaio H. A.
    Missaoui, Rokia
    Ruas, Pedro H. B.
    Zarate, Luis E.
    Song, Mark A. J.
    INFORMATION SCIENCES, 2021, 572 : 126 - 146
  • [8] Classification based on formal concept analysis and biclustering: possibilities of the approach
    A. A. Onishchenko
    S. I. Gurov
    Computational Mathematics and Modeling, 2012, 23 (3) : 329 - 336
  • [9] An Axiomatic System for Conditional Attribute Implications in Triadic Concept Analysis
    Rodriguez-Lorenzo, Estrella
    Cordero, Pablo
    Enciso, Manuel
    Missaoui, Rokia
    Mora, Angel
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2017, 32 (08) : 760 - 777
  • [10] Shapley Values in Classification Problems with Triadic Formal Concept Analysis
    Kemgne, Martin Waffo
    Njionou, Blaise Bleriot Koguep
    Kwuida, Leonard
    Ignatov, Dmitry I.
    CONCEPTUAL KNOWLEDGE STRUCTURES, CONCEPTS 2024, 2024, 14914 : 83 - 96