Phase space path integrals in Monte Carlo quantum dynamics

被引:9
|
作者
Caratzoulas, S [1 ]
Pechukas, P [1 ]
机构
[1] COLUMBIA UNIV,DEPT CHEM,NEW YORK,NY 10027
来源
JOURNAL OF CHEMICAL PHYSICS | 1996年 / 104卷 / 16期
关键词
D O I
10.1063/1.471303
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article we present two phase space path integrals in terms of coherent states. The first one is derived in a standard fashion but using a nonstandard resolution of the identity in terms of coherent states with different width parameters. The second path integral emerges from a novel phase space representation in terms of coherent states distributed on n-dimensional manifolds embedded in the 2n-dimensional phase space of an n-degree-of-freedom system. These states are shown to form locally complete basis sets since we show that fairly smooth and localized functions can be expanded in terms of them in a unique way. In this representation the time evolution operator can be cast in the form of a phase space path integral. Both path integrals can be evaluated by straightforward implementation of Monte Carlo methods. In both cases the probability amplitude between two phase points turns out to be proportional to the average of the phase, e(i/hl integral(p dq-H dt))(P d4-H dr), over a Markov process of phase space paths consisting of classical trajectories interrupted at intervals by Gaussian ''quantum jumps.'' The numerical evaluation of these expressions through importance sampling is demonstrated. (C) 1996 American Institute of Physics.
引用
收藏
页码:6265 / 6277
页数:13
相关论文
共 50 条
  • [1] Exploiting locality in time and space: Iterative Monte Carlo path integral methods for quantum dynamics
    Makri, Nancy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [2] Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space
    Schachenmayer, J.
    Pikovski, A.
    Rey, A. M.
    PHYSICAL REVIEW X, 2015, 5 (01):
  • [3] Wavepacket phase-space quantum Monte Carlo method
    Ian Welland
    David K. Ferry
    Journal of Computational Electronics, 2021, 20 : 267 - 273
  • [4] Wavepacket phase-space quantum Monte Carlo method
    Welland, Ian
    Ferry, David K.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 267 - 273
  • [5] Complex - valued path integrals Monte Carlo simulation of quantum electrons in disordered system of scatterers
    Filinov, VS
    MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS, 1996, 49 : 931 - &
  • [6] Local parabolic reference approximation of thermal Feynman path integrals in quantum Monte Carlo simulations
    Chao, CE
    Andersen, HC
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (23): : 10121 - 10130
  • [7] QUANTUM-STATISTICAL MONTE-CARLO METHOD - PATH INTEGRALS WITH BOUNDARY-CONDITIONS
    BARKER, JA
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06): : 2914 - 2918
  • [8] QUANTUM MONTE-CARLO DYNAMICS - THE STATIONARY PHASE MONTE-CARLO PATH INTEGRAL CALCULATION OF FINITE TEMPERATURE TIME CORRELATION-FUNCTIONS
    DOLL, JD
    BECK, TL
    FREEMAN, DL
    JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (09): : 5753 - 5763
  • [9] EFFICIENT MOLECULAR-DYNAMICS AND HYBRID MONTE-CARLO ALGORITHMS FOR PATH-INTEGRALS
    TUCKERMAN, ME
    BERNE, BJ
    MARTYNA, GJ
    KLEIN, ML
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (04): : 2796 - 2808
  • [10] STATIONARY PHASE MONTE-CARLO METHODS - INTERFERENCE EFFECTS IN QUANTUM MONTE-CARLO DYNAMICS
    DOLL, JD
    RICK, SW
    FREEMAN, DL
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1992, 70 (02): : 497 - 505