Convex sets;
geometric transversals;
depth in hyperplane arrangements;
regression depth;
D O I:
10.1145/1377676.1377740
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
What is the smallest number tau = tau(n) such that for any collection of n pairwise disjoint convex sets in d-dimensional Euclidean space, there is a point such that any ray (half-line) emanating from it meets at most tau sets of the collection? This question of Urrutia is closely related to the notion of regression depth introduced by Rousseeuw and Hubert (1996). We show the following: Given any collection C of n pairwise disjoint compact convex sets in d-dimensional Euclidean space, there exists a point p such that any ray emanating from p meets at most dn+1/d+1 members of C. There exist collections of n pairwise disjoint (i) equal length segments or (ii) disks in the Euclidean plane such that from any point there is a ray that meets at least 2n/3 - 2 of them. We also determine the asymptotic behavior of tau(n) when the convex bodies are fat and of roughly equal size.
机构:
HUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
UCL, Dept Math, Gower St, London WC1E 6BT, EnglandHUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
Barany, Imre
Dillon, Travis
论文数: 0引用数: 0
h-index: 0
机构:
MIT, 77 Massachusetts Ave, Cambridge, MA USAHUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
Dillon, Travis
Palvolgyi, Domotor
论文数: 0引用数: 0
h-index: 0
机构:
HUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
Eotvos Lorand Univ, Budapest, HungaryHUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
Palvolgyi, Domotor
Varga, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
HUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, HungaryHUN REN Alfred Reny Inst Math, 13 Realtanoda St, H-1053 Budapest, Hungary
机构:
Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev St,Block 8, Sofia 1113, BulgariaBulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev St,Block 8, Sofia 1113, Bulgaria
Kortezov, Ivaylo
MATHEMATICS AND INFORMATICS,
2022,
65
(06):
: 546
-
555