On shrinking targets for piecewise expanding interval maps

被引:20
|
作者
Persson, Tomas [1 ]
Rams, Michal [2 ]
机构
[1] Lund Univ, Ctr Math Sci, Box 118, S-22100 Lund, Sweden
[2] Polish Acad Sci, Inst Matematyczny, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
D O I
10.1017/etds.2015.49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a map T : [0, 1] -> [0, 1] with an invariant measure mu, we study, for a mu-typical x, the set of points y such that the inequality vertical bar T-n x - y vertical bar < r(n) is satisfied for infinitely many n. We give a formula for the Hausdorff dimension of this set, under the assumption that T is piecewise expanding and mu(phi) is a Gibbs measure. In some cases we also show that the set has a large intersection property.
引用
收藏
页码:646 / 663
页数:18
相关论文
共 50 条
  • [1] The attractor of piecewise expanding maps of the interval
    Del Magno, Gianluigi
    Dias, Joao Lopes
    Duarte, Pedro
    Gaivao, Jose Pedro
    STOCHASTICS AND DYNAMICS, 2020, 20 (02)
  • [2] Expanding maps, shrinking targets and hitting times
    Fernandez, J. L.
    Melian, M. V.
    Pestana, D.
    NONLINEARITY, 2012, 25 (09) : 2443 - 2471
  • [3] On the susceptibility function of piecewise expanding interval maps
    Baladi, Viviane
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (03) : 839 - 859
  • [4] On the Susceptibility Function of Piecewise Expanding Interval Maps
    Viviane Baladi
    Communications in Mathematical Physics, 2007, 275 : 839 - 859
  • [5] A Family of Eventually Expanding Piecewise Linear Maps of the Interval
    Barrientos, Pablo G.
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (07): : 674 - 680
  • [6] Topological transitivity for expanding piecewise monotonic maps on the interval
    Raith P.
    aequationes mathematicae, 1999, 57 (2) : 303 - 311
  • [7] Piecewise linear interval maps both expanding and contracting
    Boudourides, MA
    Fotiades, NA
    DYNAMICS AND STABILITY OF SYSTEMS, 2000, 15 (04): : 343 - 351
  • [9] THE DIFFUSION COEFFICIENT FOR PIECEWISE EXPANDING MAPS OF THE INTERVAL WITH METASTABLE STATES
    Dolgopyat, Dmitry
    Wright, Paul
    STOCHASTICS AND DYNAMICS, 2012, 12 (01)
  • [10] Shrinking targets and eventually always hitting points for interval maps
    Kirsebom, Maxim
    Kunde, Philipp
    Persson, Tomas
    NONLINEARITY, 2020, 33 (02) : 892 - 914