CRITICAL VIRTUAL MANIFOLDS AND PERVERSE SHEAVES

被引:5
|
作者
Kiem, Young-Hoon [1 ,2 ]
Li, Jun [3 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Donaldson-Thomas invariant; critical virtual manifold; perverse sheaves; mixed Hodge module; HODGE-MODULES; INVARIANTS;
D O I
10.4134/JKMS.j170385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Donaldson-Thomas theory, moduli spaces are locally the critical locus of a holomorphic function defined on a complex manifold. In this paper, we develop a theory of critical virtual manifolds which are the gluing of critical loci of holomorphic functions. We show that a critical virtual manifold X admits a natural semi-perfect obstruction theory and a virtual fundamental class [X](vir) whose degree DT(X) = deg[X](vir) is the Euler characteristic chi(nu)(X) weighted by the Behrend function nu. We prove that when the critical virtual manifold is orientable, the local perverse sheaves of vanishing cycles glue to a perverse sheaf P whose hypercohomology has Euler characteristic equal to the Donaldson-Thomas type invariant DT(X). In the companion paper [17], we proved that a moduli space X of simple sheaves on a Calabi-Yau 3-fold Y is a critical virtual manifold whose perverse sheaf categorifies the Donaldson-Thomas invariant of Y and also gives us a mathematical theory of GopakumarVafa invariants.
引用
收藏
页码:623 / 669
页数:47
相关论文
共 50 条
  • [1] Irregular perverse sheaves
    Kuwagaki, Tatsuki
    COMPOSITIO MATHEMATICA, 2021, 157 (03) : 573 - 624
  • [2] Perverse sheaves on Grassmannians
    Braden, T
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (03): : 493 - 532
  • [3] Artin perverse sheaves
    Ruimy, Raphael
    JOURNAL OF ALGEBRA, 2024, 639 : 596 - 677
  • [4] Perverse sheaves and quivers
    Gelfand, S
    MacPherson, R
    Vilonen, K
    DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) : 621 - 643
  • [5] PERVERSE COHERENT SHEAVES
    Arinkin, Dmitry
    Bezrukavnikov, Roman
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (01) : 3 - 29
  • [6] Perverse monodromic sheaves
    Gouttard, Valentin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 388 - 424
  • [7] Perverse sheaves on Riemann surfaces as Milnor sheaves
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    Soibelman, Yan
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [8] On Parabolic Restriction of Perverse Sheaves
    Bezrukavnikov, Roman
    Yom Din, Alexander
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2021, 57 (3-4) : 1089 - 1107
  • [9] PROLONGATION OF PERVERSE MONODROMIC SHEAVES
    VERDIER, JL
    ASTERISQUE, 1985, (130) : 218 - 236
  • [10] Shuffle algebras and perverse sheaves
    Kapranov, Mikhail
    Schechtman, Vadim
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (03) : 573 - 657