Modification of carbon black by thermal treatment in air atmosphere

被引:2
|
作者
Milenov, T. [1 ]
Avramova, I [2 ]
Avdeev, G. [3 ]
Mladenoff, J. [1 ]
Pishinkov, D. [4 ]
Genkov, K. [5 ]
Zyapkov, A. [5 ]
Russev, S. [5 ]
Nikolov, A. [1 ]
Stankova, N. [1 ]
Velikova, R. [1 ]
Kolev, S. [1 ]
Valcheva, E. [5 ]
机构
[1] Bulgarian Acad Sci, Acad E Djakov Inst Elect, 72 Tzarigradsko Chausee, Sofia 1784, Bulgaria
[2] Bulgarian Acad Sci, Inst Gen & Inorgan Chem, Acad G Bonchev Str,Bl 11, Sofia 1113, Bulgaria
[3] Bulgarian Acad Sci, R Kaishev Inst Phys Chem, Acad G Bonchev Str,Bl 11, Sofia 1113, Bulgaria
[4] Sofia Med SA, 4 Dimitar Peshev Str, Sofia 1528, Bulgaria
[5] St Kliment Ohridski Univ Sofia, Fac Phys, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
GRAPHITE OXIDE; GRAPHENE; SPECTROSCOPY; SPECTRA; RAMAN;
D O I
10.1088/1742-6596/1492/1/012063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We modified carbon black (CB) with a large surface area (ENSACO 350 GRANULAR) by acetone and further thermal treatment. The pristine and the modified CB were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Raman spectroscopy. The acetone treatment increases the content of oxygen-containing radicals in CB. The thermal annealing was performed at temperatures ranging from 250 degrees C to 1080 degrees C for three hours in air atmosphere. The powder XRD patterns revealed that the broad complex peak centered at about 2 theta = 24.7 - 24.8 degrees, which arises from graphitic-ordered sp(2)-hybridized carbon, shifts to its usual position at 2 theta = 26.2 degrees as the annealing temperature is increased. We concluded that the above results pointed to a relative decrease in the number of 3D graphitic nano-crystals and an increase in the predominantly 2D ones. The Raman studies confirmed the above conclusions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Modification of Carbon Black by Thermal Treatment in Air-atmosphere
    Tzonev, L.
    Pishinkov, D.
    Avramova, I.
    Avdeev, G.
    Valcheva, E.
    Mladenoff, J.
    Genkov, K.
    Zyapkov, A.
    Russev, S.
    Kolev, S.
    Milenov, T.
    10TH JUBILEE CONFERENCE OF THE BALKAN PHYSICAL UNION, 2019, 2075
  • [2] Air Temperature and Black Carbon Concentration in the Surface Atmosphere at Tiksi, Yakutia
    A. A. Vinogradova
    T. B. Titkova
    Izvestiya, Atmospheric and Oceanic Physics, 2019, 55 : 1585 - 1591
  • [3] Air Temperature and Black Carbon Concentration in the Surface Atmosphere at Tiksi, Yakutia
    Vinogradova, A. A.
    Titkova, T. B.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (11) : 1585 - 1591
  • [4] The thermal modification of waste carbon black in argon plasma jet
    Resztak, A
    Plotczyk, W
    Pawlowski, S
    Sekulska, A
    HIGH TEMPERATURE MATERIAL PROCESSES, 2001, 5 (03): : 355 - 358
  • [7] Dependence of Variations in Black Carbon Content in the Atmosphere of Moscow on Air Mass Transport Direction
    Kopeikin, V. M.
    Ponomareva, T. Ya
    ATMOSPHERIC AND OCEANIC OPTICS, 2021, 34 (01) : 74 - 80
  • [8] Dependence of Variations in Black Carbon Content in the Atmosphere of Moscow on Air Mass Transport Direction
    V. M. Kopeikin
    T. Ya. Ponomareva
    Atmospheric and Oceanic Optics, 2021, 34 : 74 - 80
  • [9] Modification of plasma-generated SiC nanoparticles by heat treatment under air atmosphere
    Wang, Cheng
    Zhou, Jiawen
    Song, Ming
    Chen, Xianhui
    Zheng, Yan
    Xia, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [10] Surface Modification and Thermal Conductivity of PET Fabrics with Butadiene Latex and Carbon Black
    Hongmei Zuo
    Yuting Du
    Zihao Zhou
    Yaning Xu
    Jie Shi
    Lihua Zou
    Yanxia Xie
    Fibers and Polymers, 2025, 26 (4) : 1617 - 1630