Multibump solutions for quasilinear elliptic equations with critical growth

被引:13
|
作者
Liu, Jiaquan [1 ]
Wang, Zhi-Qiang [2 ,3 ]
Wu, Xian [4 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[4] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
CRITICAL-POINT THEORY; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.1063/1.4830027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The current paper is concerned with constructing multibump solutions for a class of quasilinear Schrodinger equations with critical growth. This extends the classical results of Coti Zelati and Rabinowitz [Commun. Pure Appl. Math. 45, 1217-1269 (1992)] for semilinear equations as well as recent work of Liu, Wang, and Guo [J. Funct. Anal. 262, 4040-4102 (2012)] for quasilinear problems with subcritical growth. The periodicity of the potentials is used to glue ground state solutions to construct multibump bound state solutions. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:31
相关论文
共 50 条