Comparison of nonlinear filtering techniques for inertial sensors error identification in INS/GPS integration

被引:1
|
作者
Kaviani, S. [1 ]
Salarieh, H. [1 ]
Alasty, A. [1 ]
Abediny, M. [1 ]
机构
[1] Sharif Univ Technol, Sch Mech Engn, POB 11365-9567, Tehran, Iran
关键词
Extended Kalman Filter (EKF); Unscented Kalman Filter (UKF); Extended Particle Filter (EPF); Unscented Particle Filter (UPF); GPS/INS INTEGRATION;
D O I
10.24200/sci.2017.4328
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonlinear filtering techniques are used to fuse the Global Positioning System (GPS) with Inertial Navigation System (INS) to provide a robust and reliable navigation system with a performance superior to that of either INS or GPS alone. Prominent nonlinear estimators in this field are Kalman Filters (KF) and Particle Filters (PF). The main objective of this research is the comparative study of the well-established filtering methods of EKF, UKF, and PF based on EKF and UKF in an INS-GPS integrated navigation system. Different features of INS-GPS integrated navigation methods in the state estimation, bias estimation, and bias/scale factor estimation are investigated using these four filtering algorithms. Both ground-vehicle experimental test and fiight simulation test have been utilized to evaluate the filters performance. (c) 2018 Sharif University of Technology. All rights reserved.
引用
收藏
页码:1281 / 1295
页数:15
相关论文
共 50 条
  • [1] Quantization and Colored Noises Error Modeling for Inertial Sensors for GPS/INS Integration
    Han, Songlai
    Wang, Jinling
    IEEE SENSORS JOURNAL, 2011, 11 (06) : 1493 - 1503
  • [2] Optimal nonlinear filtering in GPS/INS integration
    Carvalho, H
    DelMoral, P
    Monin, A
    Salut, G
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (03) : 835 - 850
  • [3] The Feasibility of MEMS Inertial Sensors for Deep Integration of GPS and INS
    Wang, Kedong
    Li, Yong
    Rizos, Chris
    PROCEEDINGS OF THE 22ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2009), 2009, : 3122 - 3127
  • [4] Inertial Navigation System Data Filtering Prior to GPS/INS Integration
    Baselga, Sergio
    Garcia-Asenjo, Luis
    Garrigues, Pascual
    Lerma, Jose Luis
    JOURNAL OF NAVIGATION, 2009, 62 (04): : 711 - 720
  • [5] INS/GPS KF Integration Performance Improvement based on Accurate Inertial Sensors Stochastic Error Modelling
    Shahrawy, Ahmed
    Radi, Ahmed
    Zahran, Shady
    Anis, Wagdy
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 219 - 226
  • [6] Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration
    Jwo, Dah-Jing
    Hu, Chia-Wei
    Tseng, Chien-Hao
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2013, 10
  • [7] Bounded Constrained Filtering for GPS/INS Integration
    Einicke, Garry A.
    Falco, Gianluca
    Malos, John T.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (01) : 125 - 133
  • [8] A nonlinear observer for GPS and INS integration
    Vik, B
    Fossen, TI
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2956 - 2961
  • [9] Observability of error states in GPS/INS integration
    Hong, SP
    Lee, MH
    Chun, HH
    Kwon, SH
    Speyer, JL
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (02) : 731 - 743
  • [10] EVALUATION OF AN INS ERROR MODEL FOR MINIATURIZED INERTIAL SENSORS
    Grigorie, Teodor Lucian
    Corcau, Costinel Laurentiu
    Negrea, Petre
    Sandu, Dragos George
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING CONFERENCE PROCEEDINGS, SGEM 2016, VOL II, 2016, : 271 - 278