Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations

被引:77
|
作者
Serdio, Francisco [1 ]
Lughofer, Edwin [1 ]
Pichler, Kurt [2 ]
Buchegger, Thomas [2 ]
Pichler, Markus [2 ]
Efendic, Hajrudin [3 ]
机构
[1] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Linz, Austria
[2] Austrian Competence Ctr Mechatron, Linz, Austria
[3] Johannes Kepler Univ Linz, Inst Design & Control Mechatron Syst, Linz, Austria
关键词
Residual-based fault detection; System identification; Vectorized time-series models (types of); Multivariate orthogonal space transformations; On-line incremental residual analysis; PARTIAL LEAST-SQUARES; FUZZY-SYSTEMS; DIAGNOSIS; CLASSIFIER; ALGORITHMS; COMPONENTS;
D O I
10.1016/j.inffus.2014.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the usage of multivariate orthogonal space transformations and vectorized time-series models in combination with data-driven system identification models to achieve an enhanced performance of residual-based fault detection in condition monitoring systems equipped with multi-sensor networks. Neither time-consuming annotated samples nor fault patterns/models need to be available, as our approach is solely based on on-line recorded data streams. The system identification step acts as a fusion operation by searching for relations and dependencies between sensor channels measuring the state of system variables. We therefore apply three different vectorized time-series variants: (i) non-linear finite impulse response models (NFIR) relying only on the lagged input variables, (ii) non-linear output error models (NOE), also including the lags of the own predictions and (iii) non-linear Box-Jenkins models (NBJ) which include the lags of the predictions errors as well. The use of multivariate orthogonal space transformations allows to produce more compact and accurate models due to an integrated dimensionality (noise) reduction step. Fault detection is conducted based on finding anomalies (untypical occurrences) in the temporal residual signal in incremental manner. Our experimental results achieved on four real-world condition monitoring scenarios employing multi-sensor network systems demonstrate that the Receiver Operating Characteristic (ROC) curves are improved over those ones achieved with native static models (w/o lags, w/o transformations) by about 20-30%. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 291
页数:20
相关论文
共 50 条
  • [1] Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals
    Zhang, Yuxin
    Chen, Yiqiang
    Wang, Jindong
    Pan, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 2118 - 2132
  • [2] Multi-sensor and time-series approaches for monitoring of snow parameters
    Solberg, R
    Amilien, J
    Koren, H
    Eikvil, L
    Malnes, E
    Storvold, R
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1661 - 1666
  • [3] Multi-Sensor Fault Diagnosis Based on Time Series in an Intelligent Mechanical System
    Xu, Zhuoran
    Li, Qianmu
    Qian, Linfang
    Wang, Manyi
    SENSORS, 2022, 22 (24)
  • [4] VHR TIME-SERIES GENERATION BY PREDICTION AND FUSION OF MULTI-SENSOR IMAGES
    Correa, Yady Tatiana Solano
    Bovolo, Francesca
    Bruzzone, Lorenzo
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3298 - 3301
  • [5] AN ORTHOGONAL CLASS OF MODELS FOR TIME-SERIES
    LINHART, H
    ZUCCHINI, W
    SOUTH AFRICAN STATISTICAL JOURNAL, 1984, 18 (01) : 59 - 67
  • [6] MULTIVARIATE LINEAR TIME-SERIES MODELS
    HANNAN, EJ
    KAVALIERIS, L
    ADVANCES IN APPLIED PROBABILITY, 1984, 16 (03) : 492 - 561
  • [7] Aircraft Engine Fault Detection Algorithm Based on Multivariate Time Series Sensor Data
    Bian, Hongning
    Zou, Qian
    Kong, Xinyi
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 622 - 629
  • [8] The Fault Detection of Multi-Sensor Based on Multi-Scale PCA
    Wang, Zhanfeng
    Du, Hailian
    Lv, Feng
    Du, Wenxia
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4697 - 4700
  • [9] Multivariate time-series clustering based on component relationship networks
    Li, Hailin
    Du, Tian
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [10] A Neural Networks Based Method for Multivariate Time-Series Forecasting
    Li, Shaowei
    Huang, He
    Lu, Wei
    IEEE ACCESS, 2021, 9 : 63915 - 63924