Topological sensitivity and shape optimization for the Stokes equations

被引:81
|
作者
Guillaume, P [1 ]
Idris, KS [1 ]
机构
[1] Inst Natl Sci Appl, Dept Math, UMR 5640, MIP, F-31077 Toulouse 4, France
关键词
topological sensitivity; topological derivative; shape optimization; design sensitivity; Stokes equations;
D O I
10.1137/S0363012902411210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The topological sensitivity analysis provides an asymptotic expansion of a shape function with respect to the insertion of a small hole or obstacle inside a domain. This expansion can then be used for shape optimization. In this paper, such an expansion is obtained for the Stokes equations with general shape functions and arbitrarily shaped holes. A numerical example illustrates the use of the topological sensitivity in a shape optimization problem.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [1] Shape optimization for stationary Navier-Stokes equations
    Halanay, Andrei
    Tiba, Dan
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1359 - 1374
  • [2] Shape Sensitivity Analysis for Compressible Navier-Stokes Equations
    Plotnikov, Pavel I.
    Ruban, Evgenya V.
    Sokolowski, Jan
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 430 - +
  • [3] Shape sensitivity analysis of the work functional for the compressible Navier–Stokes equations
    Plotnikov, Pavel I.
    Sokolowski, Jan
    Lecture Notes in Computational Science and Engineering, 2014, 101 : 343 - 377
  • [4] Geometric inverse problem for the nonstationary Stokes equations using topological sensitivity analysis
    Malek, Rakia
    Abdelwahed, Mohamed
    Chorfi, Nejmeddine
    Hassine, Maatoug
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [5] Optimization of Current Carrying Muticables using Topological and Shape Sensitivity
    Belhachmi, Zakaria
    Meftahi, Belhassen
    Meftahi, Houcine
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (04): : 425 - 447
  • [6] A SHAPE OPTIMIZATION PROBLEM CONSTRAINED WITH THE STOKES EQUATIONS TO ADDRESS MAXIMIZATION OF VORTICES
    Simon, John Sebastian
    Notsu, Hirofumi
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 1873 - 1902
  • [7] Topological sensitivity analysis for the 3D nonlinear Navier-Stokes equations
    Hassine, Maatoug
    Ouni, Marwa
    ASYMPTOTIC ANALYSIS, 2023, 135 (1-2) : 277 - 304
  • [8] Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Existence Analysis
    Miroslav Bulíček
    Jaroslav Haslinger
    Josef Málek
    Jan Stebel
    Applied Mathematics and Optimization, 2009, 60 : 185 - 212
  • [9] Shape optimization for Stokes flows using sensitivity analysis and finite element method
    Ta Thi Thanh Mai
    Le Van Chien
    Pham Ha Thanh
    APPLIED NUMERICAL MATHEMATICS, 2018, 126 : 160 - 179
  • [10] Shape optimization for Stokes flow
    Gao, Zhiming
    Ma, Yichen
    Zhuang, Hongwei
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) : 827 - 844