Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz

被引:41
|
作者
Evenbly, G. [1 ]
Vidal, G. [2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 23期
关键词
QUANTUM SPIN CHAINS; GROUND-STATE; AREA;
D O I
10.1103/PhysRevB.89.235113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the scaling of entanglement entropy in both the multiscale entanglement renormalization ansatz (MERA) and in its generalization, the branching MERA. We provide analytical upper bounds for this scaling, which take the general form of a boundary law with various types of multiplicative corrections, including power-law corrections all the way to a bulk law. For several cases of interest, we also provide numerical results that indicate that these upper bounds are saturated to leading order. In particular, we establish that, by a suitable choice of holographic tree, the branching MERA can reproduce the logarithmic multiplicative correction of the boundary law observed in Fermi liquids and spin-Bose metals in D >= 2 dimensions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fermionic multiscale entanglement renormalization ansatz
    Corboz, Philippe
    Vidal, Guifre
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [2] Quantum Multiscale Entanglement Renormalization Ansatz Channels
    Giovannetti, V.
    Montangero, S.
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2008, 101 (18)
  • [3] Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz
    Evenbly, G.
    Vidal, G.
    PHYSICAL REVIEW LETTERS, 2015, 115 (20)
  • [4] Variational Monte Carlo with the multiscale entanglement renormalization ansatz
    Ferris, Andrew J.
    Vidal, Guifre
    PHYSICAL REVIEW B, 2012, 85 (16):
  • [5] Multiscale Entanglement Renormalization Ansatz: Causality and Error Correction
    Pomarico, Domenico
    DYNAMICS, 2023, 3 (03): : 622 - 635
  • [6] Holographic dynamics from multiscale entanglement renormalization ansatz
    Chua, Victor
    Passias, Vasilios
    Tiwari, Apoorv
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [7] Simulation of time evolution with multiscale entanglement renormalization ansatz
    Rizzi, Matteo
    Montangero, Simone
    Vidal, Guifre
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [8] Critical exponents with a multiscale entanglement renormalization Ansatz channel
    Montangero, S.
    Rizzi, M.
    Giovannetti, V.
    Fazio, Rosario
    PHYSICAL REVIEW B, 2009, 80 (11)
  • [9] Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence
    Bao, Ning
    Cao, ChunJun
    Carroll, Sean M.
    Chatwin-Davies, Aidan
    Hunter-Jones, Nicholas
    Pollack, Jason
    Remmen, Grant N.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [10] From tree tensor network to multiscale entanglement renormalization ansatz
    Qian, Xiangjian
    Qin, Mingpu
    PHYSICAL REVIEW B, 2022, 105 (20)