ON FUNDAMENTAL FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS

被引:4
|
作者
Boecherer, Siegfried [1 ]
Das, Soumya [2 ,3 ]
机构
[1] Univ Mannheim, Inst Math, D-58131 Mannheim, Germany
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[3] Univ Mannheim, D-68131 Mannheim, Germany
关键词
Fourier coefficients; Siegel modular forms; fundamental discriminant; vector-valued; nonvanishing; CUSP FORMS; DENSITY-THEOREM; JACOBI FORMS;
D O I
10.1017/S1474748021000086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if F is a nonzero (possibly noncuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many nonzero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. Further, as an application of a variant of our result and complementing the work of A. Pollack, we show how to obtain an unconditional proof of the functional equation of the spinor L-function of a holomorphic cuspidal Siegel eigenform of degree 3 and level 1.
引用
收藏
页码:2001 / 2041
页数:41
相关论文
共 50 条