Modelling of municipal solid waste gasification using an optimised ensemble soft computing model

被引:65
|
作者
Kardani, Navid [1 ]
Zhou, Annan [1 ]
Nazem, Majidreza [1 ]
Lin, Xiaoshan [1 ]
机构
[1] Royal Melbourne Inst Technol RMIT, Civil & Infrastruct Engn Discipline, Sch Engn, Melbourne, Vic 3001, Australia
关键词
Municipal solid waste; Gasification; Porous media; Soft computing approaches; Optimised ensemble model; BIOMASS GASIFICATION; ARTIFICIAL-INTELLIGENCE; MSW; PREDICTION; SIMULATION; CONVERSION; SELECTION; STRENGTH; SYNGAS; FUELS;
D O I
10.1016/j.fuel.2020.119903
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Modelling and simulation of municipal solid waste (MSW) gasification process is a complex and computationally expensive task due to the porous structure of MSW and the nonlinear relations amongst various parameters. In this study, to model the MSW gasification in fluidised bed gasifier, an optimised ensemble model (OEM) is established based on five advanced soft computing models, including decision tree (DT), extreme gradient boosting (XGB), random forest (RF), multilayer perceptron (MLP) and support vector regression (SVR). The particle swarm optimisation (PSO) algorithm is employed to optimise the five models. The proposed optimised ensemble model is then implemented to predict the gasification characteristics including heating value of gas (LHV), heating value of gasification products (LHVp) and the syngas yield in the process of MSW gasification. The simulation results reveal that the proposed ensemble model is a promising alternative in modelling the nonlinear complex thermochemical processes, such as MSW gasification. Furthermore, through the analysis of the importance of influential variables, the temperature is found to be the most important variable in the modelling of MSW gasification.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A general model for air gasification of heterogenous municipal solid waste
    Biancini, Giovanni
    Moradi, Ramin
    Cioccolanti, Luca
    Marchetti, Barbara
    Moglie, Matteo
    Del Zotto, Luca
    ENERGY CONVERSION AND MANAGEMENT, 2023, 278
  • [2] Gasification of Municipal Solid Waste using Tyre Char as Catalyst
    Saharuddin M.Q.
    Kadir S.A.S.A.
    Alias R.
    Key Engineering Materials, 2019, 797 : 102 - 107
  • [3] Optimised production of tailored syngas from municipal solid waste (MSW) by sorption-enhanced gasification
    Martinez, Isabel
    Grasa, Gemma
    Callen, Maria S.
    Manuel Lopez, Jose
    Murillo, Ramon
    CHEMICAL ENGINEERING JOURNAL, 2020, 401
  • [4] Gasification of municipal solid waste in the Plasma Gasification Melting process
    Zhang, Qinglin
    Dor, Liran
    Fenigshtein, Dikla
    Yang, Weihong
    Blasiak, Wlodzmierz
    APPLIED ENERGY, 2012, 90 (01) : 106 - 112
  • [5] A Bi-level Optimization Model for Municipal Solid Waste Disposal Using Gasification Technology
    Shi, Yi
    Wang, Fengjuan
    Ma, Minna
    EIGHTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, ICMSEM 2024, 2024, 215 : 425 - 439
  • [6] Hydrothermal catalytic gasification of municipal solid waste
    Onwudili, Jude A.
    Williams, Paul T.
    ENERGY & FUELS, 2007, 21 (06) : 3676 - 3683
  • [7] Thermodynamic Analysis of the Gasification of Municipal Solid Waste
    Xu, Pengcheng
    Jin, Yong
    Cheng, Yi
    ENGINEERING, 2017, 3 (03) : 416 - 422
  • [8] A Numerical investigation of municipal solid waste gasification using aspen plus
    Begum, Sharmina
    Rasul, M. G.
    Akbar, Delwar
    10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 710 - 717
  • [9] A comprehensive review of the role of soft computing techniques in municipal solid waste management
    Sree T.R.
    Kanmani S.
    Environmental Technology Reviews, 2024, 13 (01) : 168 - 185
  • [10] Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
    Burra, Kiran Raj Goud
    Fernandez Hernandez, Ines
    Castaldi, Marco J.
    Goff, Stephen
    Gupta, Ashwani K.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (02):