3D Orientation and Object Classification from Partial Model Point Cloud based on PointNet

被引:0
|
作者
Tuan Anh Nguyen [1 ]
Lee, Sukhan [1 ]
机构
[1] Sungkyunkwan Univ, Inst Elect & Comp Engn, Intelligent Syst Res, Suwon 2066, South Korea
关键词
3D Orientation Estimation; 3D Object Recognition; PointNet; Deep Learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a deep network based on PointNet to estimate the orientations and predict the object classes of 3D oriented objects using their partial model point clouds. More specific, our network exploits the advantages of PointNet to extract the global features of two kinds of point cloud: 1) 3D partial model orientation point cloud which is a part of a 3D object in an observed orientation and 2) full object model point cloud of the 3D object in the reference orientation which is referred to specify the orientations. We then associate the partial model point cloud global features with the corresponding reference global features by an association subnetwork, in which the association network takes the partial model global features as the input and output the corresponding reference feature reconstruction. We use this global feature reconstruction as aligned global features to infer the object classes of the partial model point cloud. To predict the orientation of an oriented point cloud from its partial model point cloud, we use the concatenation of partial model global features and the reference feature reconstruction as an optimal orientation features for network learning with orientation targets. Using the orientation dataset with partial model point clouds based on 3D ModelNet, our experiments have shown the better object classification performance comparing to the vanilla PointNet and the robustness of our proposed network in orientation estimation.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 50 条
  • [1] 3D Point Cloud Classification Algorithm based on Improved PointNet plus
    Sun, Zhijin
    Hu, Jiayu
    Jiang, Saibiao
    Li, Ziwen
    Deng, Kaitao
    Zhang, Ziyang
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 294 - 298
  • [2] Optimized PointNet for 3D Object Classification
    Li, Zhuangzhuang
    Li, Wenmei
    Liu, Haiyan
    Wang, Yu
    Gui, Guan
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT I, 2019, 301 : 271 - 278
  • [3] Influence of Preprocessing and Augmentation on 3D Point Cloud Classification Based on a Deep Neural Network: PointNet
    Seo, Hogeon
    Joo, Sungmoon
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 895 - 899
  • [4] Pointwise CNN for 3D Object Classification on Point Cloud
    Song, Wei
    Liu, Zishu
    Tian, Yifei
    Fong, Simon
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2021, 17 (04): : 787 - 800
  • [5] AB-PointNet for 3D Point Cloud Recognition
    Komori, Junya
    Hotta, Kazuhiro
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 232 - 237
  • [6] Characteristic Analysis of Data Preprocessing for 3D Point Cloud Classification Based on a Deep Neural Network: PointNet
    Seo, Hogeon
    Joo, Sungmoon
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2021, 41 (01) : 19 - 24
  • [7] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [8] Training PointNet for Human Point Cloud Segmentation with 3D Meshes
    Ueshima, Takuma
    Hotta, Katsuya
    Tokai, Shogo
    Zhang, Chao
    FIFTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2021, 11794
  • [9] 3D Object Detection from Point Cloud Based on Deep Learning
    Hao, Ning
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [10] A novel method for the classification of 3D point clouds based on the improved PointNet plus
    Liu, Ziming
    Li, Guoguang
    Wang, Beibei
    Yan, Bin
    Gao, Ruizhen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)