Integration of a diamine solvent based absorption and coal fly ash based mineralisation for CO2 sequestration

被引:25
|
作者
Yu, Bing [1 ,2 ]
Yu, Hai [2 ]
Li, Kangkang [2 ]
Ji, Long [2 ]
Yang, Qi [3 ]
Chen, Zuliang [1 ]
Megharaj, Mallavarapu [1 ]
机构
[1] Univ Newcastle, Global Ctr Environm Remediat, Callaghan, NSW 2308, Australia
[2] CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
[3] CSIRO Mfg, Clayton, Vic 3168, Australia
关键词
Amine regeneration; Fly ash; Desorption process; CO2; capture; CARBON-DIOXIDE CAPTURE; AQUEOUS-SOLUTIONS; REGENERATION; FEASIBILITY; DESORPTION; MECHANISM; INSIGHTS;
D O I
10.1016/j.fuproc.2019.04.030
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Our previous studies have revealed that diamines containing one primary amine group exhibit a superior kinetics while retaining their intrinsic high capacities towards CO2 absorption when compared with monoethanolamine. However, these diamine absorbents typically suffer from high regeneration energy due to the inherent structural stability of the formed carbamate species. In an effort to overcome this challenge, we developed a new CO2 sequestration process that integrates the CO2 absorption by a diamine solvent and the diamine regeneration as well as CO2 mineralization by CaO-rich fly ash. Herein, we found that CO2 rich diamine solutions can be chemically regenerated by fly ash with the stable cyclic performance via the CO2 absorption- mineralization experiments, and the CO2 sequestration capacity of the fly ash used in this process dominated the amine regeneration performance. The FT-IR analysis of species in the solution along with the characterizations of fly ash via SEM, EDX and XRD revealed that fly ash was effective to regenerate a diamine- 1-(2-hydroxyethyl)-4-aminopiperidine (C4) by deprotonation of C4H(+), meanwhile, the CaO component in fly ash can react with CO2 in the C4 solution to produce the calcium carbonate precipitate. This approach presents a significant energy saving alternative to the traditional CO2 desorption process.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
  • [1] CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal
    Ji, Long
    Yu, Hai
    Wang, Xiaolong
    Grigore, Mihaela
    French, David
    Gozukara, Yesim M.
    Yu, Jianglong
    Zeng, Ming
    FUEL PROCESSING TECHNOLOGY, 2017, 156 : 429 - 437
  • [2] Direct mineral carbonation of coal fly ash for CO2 sequestration
    Dananjayan, Rushendra Revathy Tamilselvi
    Kandasamy, Palanivelu
    Andimuthu, Ramachandran
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 4173 - 4182
  • [3] A Review on CO2 Sequestration via Mineralization of Coal Fly Ash
    Jiang, Long
    Cheng, Liang
    Zhang, Yuxuan
    Liu, Gaojun
    Sun, Jian
    ENERGIES, 2023, 16 (17)
  • [5] Integrated absorption-mineralisation for energy-efficient CO2 sequestration: Reaction mechanism and feasibility of using fly ash as a feedstock
    Ji, Long
    Yu, Hai
    Yu, Bing
    Jiang, Kaiqi
    Grigore, Mihaela
    Wang, Xiaolong
    Zhao, Shuaifei
    Li, Kangkang
    CHEMICAL ENGINEERING JOURNAL, 2018, 352 : 151 - 162
  • [6] Carbonation of brine impacted fractionated coal fly ash: Implications for CO2 sequestration
    Nyambura, Muriithi Grace
    Mugera, Gitari Wilson
    Felicia, Petrik Leslie
    Gathura, Ndungu Patrick
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (03) : 655 - 664
  • [7] A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash
    He, Lanlan
    Yu, Dunxi
    Lv, Weizhi
    Wu, Jianqun
    Xu, Minghou
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (43) : 15138 - 15145
  • [8] Effect of Brine Saturation on Carbonation of Coal Fly Ash for Mineral Sequestration of CO2
    Lakmali, Ukwattage Nadeesha
    Ranjith, Pathegama Gamage
    ENGINEERING GEOLOGY FOR SOCIETY AND TERRITORY, VOL 1: CLIMATE CHANGE AND ENGINEERING GEOLOGY, 2015, : 479 - 482
  • [9] Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash
    Montes-Hernandez, G.
    Perez-Lopez, R.
    Renard, F.
    Nieto, J. M.
    Charlet, L.
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 161 (2-3) : 1347 - 1354
  • [10] CO2 sequestration by indirect carbonation of high-calcium coal fly ash
    He, Lanlan
    Yu, Dunxi
    Lv, Weizhi
    Wu, Jianqun
    Xu, Minghou
    ADVANCES IN ENVIRONMENTAL TECHNOLOGIES, PTS 1-6, 2013, 726-731 : 2870 - 2874