DFT Study of Pyrolysis Gasoline Hydrogenation on Pd(100), Pd(110) and Pd(111) Surfaces

被引:6
|
作者
Ma, Haowen [1 ,3 ]
Yang, Yang [2 ]
Feng, Huixia [1 ]
Cheng, Daojian [2 ,3 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730000, Gansu, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Key Lab Energy Environm Catalysis, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[3] PetroChina, Petrochem Res Inst, Lanzhou Petrochem Res Ctr PetroChina, Lanzhou 730060, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Styrene hydrogenation; Pd surface; DFT; DISPERSED NI/AL2O3 CATALYSTS; TOTAL-ENERGY CALCULATIONS; TRICKLE-BED; ADSORPTION; REACTORS; POINTS;
D O I
10.1007/s10562-019-02780-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pyrolysis gasoline is applied to extract aromatics and to be gasoline blending stock, and its stabilization by catalytic hydrogenation under mild temperature is an important reaction in petrochemical field. Thereinto, styrene hydrogenation was considered as an example for the assessment of the catalysis performance for pyrolysis gasoline hydrogenation. In this work, the adsorption and diffusion of reactants (styrene and H) and the activation energy of styrene hydrogenation on Pd(111), Pd(100), and Pd(110) surfaces are discussed by density functional theory calculations. The adsorption energy of reactants (styrene and H) decreases in the order of Pd(110)>Pd(111)>Pd(100). The activation barriers with feasible intermediate products are investigated and the reaction activity based on the activation barriers follows the order of Pd(111)>Pd(100)>Pd(110). In addition, the diffusion barrier for styrene or H is smaller than the reaction barrier of styrene hydrogenation, indicating the true rate limiting step is the process of hydrogenation rather than the diffusion. Our results provide theoretical guide for the prepared catalyst with feasible surfaces by careful selection of preparation techniques in experiments. [GRAPHICS] .
引用
收藏
页码:2226 / 2233
页数:8
相关论文
共 50 条
  • [1] DFT Study of Pyrolysis Gasoline Hydrogenation on Pd(100), Pd(110) and Pd(111) Surfaces
    Haowen Ma
    Yang Yang
    Huixia Feng
    Daojian Cheng
    Catalysis Letters, 2019, 149 : 2226 - 2233
  • [2] Chloroform Hydrodechlorination on Palladium Surfaces: A Comparative DFT Study on Pd(111), Pd(100), and Pd(211)
    Xu, Lang
    Bhandari, Saurabh
    Chen, Jiming
    Glasgow, Jonathan
    Mavrikakis, Manos
    TOPICS IN CATALYSIS, 2020, 63 (7-8) : 762 - 776
  • [3] Chloroform Hydrodechlorination on Palladium Surfaces: A Comparative DFT Study on Pd(111), Pd(100), and Pd(211)
    Lang Xu
    Saurabh Bhandari
    Jiming Chen
    Jonathan Glasgow
    Manos Mavrikakis
    Topics in Catalysis, 2020, 63 : 762 - 776
  • [4] THE HYDROGENATION OF CN ON PD(111) AND PD(100)
    KORDESCH, ME
    STENZEL, W
    CONRAD, H
    SURFACE SCIENCE, 1986, 175 (01) : L687 - L692
  • [5] Density functional calculation of adsorption and dissociation of PbPo molecule on Pd(100), Pd(110) and Pd(111) surfaces
    Jiang, Man
    Du, Hui
    Gan, Ao
    Ni, Muyi
    Zhao, Bin
    JOURNAL OF NUCLEAR MATERIALS, 2023, 581
  • [6] The surface chemistry of norbornadiene and norbornene on Pd(111) and Pd(100): a comparative DFT study
    Ravshan S. Shamsiev
    Journal of Molecular Modeling, 2023, 29
  • [7] The surface chemistry of norbornadiene and norbornene on Pd(111) and Pd(100): a comparative DFT study
    Shamsiev, Ravshan S.
    JOURNAL OF MOLECULAR MODELING, 2023, 29 (11)
  • [8] A DFT study of furan hydrogenation and ring opening on Pd(111)
    Wang, Shengguang
    Vorotnikov, Vassili
    Vlachos, Dionisios G.
    GREEN CHEMISTRY, 2014, 16 (02) : 736 - 747
  • [9] Co monolayers and adatoms on Pd(100), Pd(111), and Pd(110): Anisotropy of magnetic properties
    Sipr, O.
    Bornemann, S.
    Ebert, H.
    Mankovsky, S.
    Vackar, J.
    Minar, J.
    PHYSICAL REVIEW B, 2013, 88 (06):
  • [10] DFT Study of Thiophene Adsorption on the Pd(111) and Pt(111) Surfaces
    Chen Zhan-Hong
    Ding Kai-Ning
    Xu Xiang-Lan
    Li Jun-Qian
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2010, 29 (03) : 365 - 376