Learning based Delay-Doppler Channel Estimation with Interleaved Pilots in OTFS

被引:4
|
作者
Mattu, Sandesh Rao [1 ]
Chockalingam, A. [1 ]
机构
[1] Indian Inst Sci, Dept Elect Commun Engn, Bangalore, Karnataka, India
关键词
OTFS modulation; DD channel estimation; interleaved pilots; deep learning; recurrent neural networks;
D O I
10.1109/VTC2022-Fall57202.2022.10012974
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditionally, channel estimation in orthogonal time frequency space (OTFS) is carried out in the delay-Doppler (DD) domain by placing pilot symbols surrounded by guard bins in the DD grid. This results in reduced spectral efficiency as the guard bins do not carry information. In the absence of guard bins, there is leakage from pilot symbols to data symbols and vice versa. Therefore, in this paper, we consider an interleaved pilot (IP) placement scheme with a lattice-type arrangement (which does not have guard bins) and propose a deep learning architecture using recurrent neural networks (referred to as IPNet) for efficient estimation of DD domain channel state information. The proposed IPNet is trained to overcome the effects of leakage from data symbols and provide channel estimates with good accuracy (e.g., the proposed scheme achieves a normalized mean square error of about 0.01 at a pilot SNR of 25 dB). Our simulation results also show that the proposed IPNet architecture achieves good bit error performance while being spectrally efficient. For example, the proposed scheme uses 12 overhead bins (12 pilot bins and no guard bins) for channel estimation in a considered frame while the embedded pilot scheme uses 25 overhead bins (1 pilot bin and 24 guard bins).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fractional Delay-Doppler Channel Estimation in OTFS with Sparse Superimposed Pilots using RNNs
    Mattu, Sandesh Rao
    Chockalingam, A.
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [2] UAMP-Based Delay-Doppler Channel Estimation for OTFS Systems
    Zhongjie Li
    Weijie Yuan
    Qinghua Guo
    Nan Wu
    Ji Zhang
    ChinaCommunications, 2023, 20 (10) : 70 - 84
  • [3] UAMP-Based Delay-Doppler Channel Estimation for OTFS Systems
    Li Zhongjie
    Yuan Weijie
    Guo Qinghua
    Wu Nan
    Zhang Ji
    CHINA COMMUNICATIONS, 2024, 21 (10) : 1 - 15
  • [4] UAMP-Based Delay-Doppler Channel Estimation for OTFS Systems
    Li, Zhongjie
    Yuan, Weijie
    Guo, Qinghua
    Wu, Nan
    Zhang, Ji
    CHINA COMMUNICATIONS, 2023, 20 (10) : 70 - 84
  • [5] UAMP-Based Delay-Doppler Channel Estimation for OTFS Systems
    Li Zhongjie
    Yuan Weijie
    Guo Qinghua
    Wu Nan
    Zhang Ji
    China Communications, 2024, 21 (10) : 1 - 15
  • [6] Survey of channel estimation method in delay-Doppler domain for OTFS
    Xing W.
    Tang X.
    Zhou Y.
    Zhang C.
    Pan Z.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (12): : 188 - 201
  • [7] Sparse Bayesian Learning of Delay-Doppler Channel for OTFS System
    Zhao, Lei
    Gao, Wen-Jing
    Guo, Wenbin
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2766 - 2769
  • [8] Learning in Time-Frequency Domain for Fractional Delay-Doppler Channel Estimation in OTFS
    Mattu, Sandesh Rao
    Chockalingam, A.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (05) : 1245 - 1249
  • [9] Delay-Doppler Channel Estimation in OTFS Systems Using DoA Estimation Techniques
    Francis, Jobin
    Reddy, Vemireddy Phanindra
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [10] Channel and Radar Parameter Estimation With Fractional Delay-Doppler Using OTFS
    Muppaneni, Sai Pradeep
    Mattu, Sandesh Rao
    Chockalingam, A.
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1392 - 1396