Effects of chalcogen substitution on electronic properties and chemical bondings of delafossite CuAlO2

被引:12
|
作者
Liu, Qi-Jun [1 ,2 ]
Zhang, Ning-Chao [1 ,2 ]
Liu, Fu-Sheng [1 ,2 ]
Liu, Zheng-Tang [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Minist Educ China, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Bond & Band Engn Grp, Sichuan Prov Key Lab Univ High Pressure Sci & Tec, Chengdu 610031, Sichuan, Peoples R China
[3] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
bandgap; computational physics; CuAlO2; density functional theory; p-type conductivity; HOLE-DOPED DELAFOSSITE; 1ST PRINCIPLES; TRANSPARENT; CONDUCTIVITY; FILMS; BAND;
D O I
10.1002/pssb.201451134
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Due to its p-type conductivity, CuAlO2 has been widely studied. However, the conductivity of p-type CuAlO2 is much lower than that of n-type, which limits its applications. We used the generalized gradient approximation and hybrid functional B3LYP to study the effects of chalcogen substitution on the electronic properties and chemical bondings of delafossite CuAlO2. The calculated results show that the doping of chalcogen (S, Se, and Te) substituting for O is thermodynamically stable. The calculated volumes, bandgaps, and valence-band widths of dopants have been detailedly discussed, indicating that the volumes and valence-band widths are increased, but the bandgaps are decreased. The density of states and charge-density distribution ranges have been analyzed, suggesting that chalcogen substitution is a good way to design new p-type Cu-based TCOs. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1630 / 1634
页数:5
相关论文
共 50 条
  • [1] Theoretical calculations of mechanical, electronic, chemical bonding and optical properties of delafossite CuAlO2
    Liu, Qi-Jun
    Liu, Zheng-Tang
    Feng, Li-Ping
    PHYSICA B-CONDENSED MATTER, 2010, 405 (08) : 2028 - 2033
  • [2] Synthesis and properties of delafossite CuAlO2 nanowires
    Mo, Runwei
    Liu, Yi
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2011, 57 (01) : 16 - 19
  • [3] Synthesis and properties of delafossite CuAlO2 nanowires
    Runwei Mo
    Yi Liu
    Journal of Sol-Gel Science and Technology, 2011, 57 : 16 - 19
  • [4] Vacancies effect on structural, electronic and mechanical properties of delafossite CuAlO2
    Jiang, H. F.
    Xu, H. J.
    Wang, P.
    Fu, P.
    Pan, P. D.
    Sun, S. P.
    PHYSICA B-CONDENSED MATTER, 2021, 616 (616)
  • [5] On the band gap of CuAlO2 delafossite
    Pellicer-Porres, J
    Segura, A
    Gilliland, AS
    Muñoz, A
    Rodríguez-Hernéndez, P
    Kim, D
    Lee, MS
    Kim, TY
    APPLIED PHYSICS LETTERS, 2006, 88 (18)
  • [6] Refractive index of the CuAlO2 delafossite
    Pellicer-Porres, J.
    Segura, A.
    Kim, D.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (01)
  • [7] Electronic properties of bivalent cations (Be, Mg and Ca) substitution for Al in delafossite CuAlO2 semiconductor by first-principles calculations
    Jiang, Haifeng
    Wang, Xiancai
    Zang, Xueping
    Wu, Weifeng
    Sun, Shunping
    Xiong, Chao
    Yin, Weiwei
    Gui, Chuanyou
    Zhu, Xuebin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 553 : 245 - 252
  • [8] Influence of Cd impurity on the electronic properties of CuAlO2 delafossite:: first-principles calculations
    Lalic, MV
    Mestnik, J
    Carbonari, AW
    Saxena, RN
    Moralles, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (22) : 5517 - 5528
  • [9] Electronic Structure of a Delafossite Oxide CuAlO2 in Comparison with CuCrO2
    Takahashi, Kenta
    Kato, Ryo
    Okawa, Mario
    Okuda, Tetsuji
    Yasui, Akira
    Ikenaga, Eiji
    Ono, Kanta
    Hamada, Noriaki
    Saitoh, Tomohiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [10] Electronic and magnetic properties of second main-group and second sub-group metals substitution for Al in delafossite CuAlO2
    Liu, Qi-Jun
    Liu, Fu-Sheng
    Liu, Zheng-Tang
    CHEMICAL PHYSICS LETTERS, 2015, 633 : 181 - 185