Worst case design for robust compensation

被引:1
|
作者
Gutman, S [1 ]
Paldi, E [1 ]
机构
[1] Technion Israel Inst Technol, Dept Mech Engn, IL-32000 Haifa, Israel
关键词
robust control; min-max;
D O I
10.1137/S0363012999363572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem [GRAPHICS] where F is an element of R-r, p is an element of R-m, and where c (.) and h (.) are C-1. Let phi(.) = Min(c(p,F)=0)h(p,F). We show, by means of simple examples, that phi(.) is, in general, discontinuous. We develop in this paper necessary conditions for the case where phi(.) is continuous ( but not necessarily differentiable). In an alternative approach ( which is computationally inferior), we treat the discontinuous case as well. We apply the results to robust control in linear systems where p stands for the ( structured) real parameter uncertainty vector and F stands for the control parameters vector. We demonstrate the results by means of examples.
引用
收藏
页码:278 / 302
页数:25
相关论文
共 50 条
  • [1] ROBUST OPTIMAL-DESIGN FOR WORST-CASE TOLERANCES
    EMCH, G
    PARKINSON, A
    JOURNAL OF MECHANICAL DESIGN, 1994, 116 (04) : 1019 - 1025
  • [2] Robust design of NMR magnet through worst case analysis
    Ambrisi, Angelo
    Formisano, Alessandro
    Martone, Raffaele
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2011, 37 (2-3) : 101 - 107
  • [3] Worst case propagated uncertainty of multidisciplinary systems in robust design optimization
    X. Gu
    J.E. Renaud
    S.M. Batill
    R.M. Brach
    A.S. Budhiraja
    Structural and Multidisciplinary Optimization, 2000, 20 : 190 - 213
  • [4] Worst-case robust design optimization under distributional assumptions
    Padulo, Mattia
    Guenov, Marin D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (08) : 797 - 816
  • [5] Worst case propagated uncertainty of multidisciplinary systems in robust design optimization
    Gu, X
    Renaud, JE
    Batill, SM
    Brach, RM
    Budhiraja, AS
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2000, 20 (03) : 190 - 213
  • [6] THE ROBUST H-2 CONTROL PROBLEM - A WORST-CASE DESIGN
    STOORVOGEL, AA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (09) : 1358 - 1370
  • [7] A Worst-Case Robust MMSE Transceiver Design for Nonregenerative MIMO Relaying
    Shen, Hong
    Wang, Jiaheng
    Xu, Wei
    Rong, Yue
    Zhao, Chunming
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (02) : 695 - 709
  • [8] ON WORST CASE DESIGN STRATEGIES
    BASAR, T
    KUMAR, PR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (1-3) : 239 - 245
  • [9] A Worst-Case Robust Beamforming Design for Multi-Antenna AF Relaying
    Shen, Hong
    Xu, Wei
    Wang, Jiaheng
    Zhao, Chunming
    IEEE COMMUNICATIONS LETTERS, 2013, 17 (04) : 713 - 716
  • [10] Robust Beamformer Design for Underlay Cognitive Radio Network Using Worst Case Optimization
    Wijewardhana, Uditha L.
    Codreanu, Marian
    Latva-aho, Matti
    2013 11TH INTERNATIONAL SYMPOSIUM ON MODELING & OPTIMIZATION IN MOBILE, AD HOC & WIRELESS NETWORKS (WIOPT), 2013, : 404 - 411