Matrix Completion Under Interval Uncertainty: Highlights

被引:0
|
作者
Marecek, Jakub [1 ]
Richtarik, Peter [2 ,3 ]
Takac, Martin [4 ]
机构
[1] IBM Res Ireland, Dublin 15, Ireland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[3] KAUST, 2221 Al Khwarizmi Bldg, Thuwal 239556900, Saudi Arabia
[4] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
D O I
10.1007/978-3-030-10997-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an overview of inequality-constrained matrix completion, with a particular focus on alternating least-squares (ALS) methods. The simple and seemingly obvious addition of inequality constraints to matrix completion seems to improve the statistical performance of matrix completion in a number of applications, such as collaborative filtering under interval uncertainty, robust statistics, event detection, and background modelling in computer vision. An ALS algorithm MACO by Marecek et al. outperforms others, including Sparkler, the implementation of Li et al. Code related to this paper is available at: http://optml.github.io/ac-dc/.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [1] Matrix completion under interval uncertainty
    Marcek, Jakub
    Richtarik, Peter
    Takac, Martin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (01) : 35 - 43
  • [2] Correlation matrix nearness and completion under observation uncertainty
    Alaiz, Carlos M.
    Dinuzzo, Francesco
    Sra, Suvrit
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (01) : 325 - 340
  • [3] Inference and uncertainty quantification for noisy matrix completion
    Chen, Yuxin
    Fan, Jianqing
    Ma, Cong
    Yan, Yuling
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (46) : 22931 - 22937
  • [4] A Resolution Under Interval Uncertainty
    Hwang, Yan-An
    Liao, Yu-Hsien
    MATHEMATICS, 2025, 13 (05)
  • [5] Cooperation under interval uncertainty
    S. Zeynep Alparslan-Gök
    Silvia Miquel
    Stef H. Tijs
    Mathematical Methods of Operations Research, 2009, 69 : 99 - 109
  • [6] Cooperation under interval uncertainty
    Alparslan-Goek, S. Zeynep
    Miquel, Silvia
    Tijs, Stef H.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (01) : 99 - 109
  • [7] Uncertainty Quantified Matrix Completion using Bayesian Hierarchical Matrix Factorization
    Fazayeli, Farideh
    Banerjee, Arindam
    Kattge, Jens
    Schrodt, Franziska
    Reich, Peter B.
    2014 13TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2014, : 312 - 317
  • [8] A Model for Uncertainty Interval Matrix of Security Assessment
    Xia, Bing
    Miao, FengJun
    Zheng, Qiusheng
    THIRD INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2010), 2010, : 66 - 69
  • [9] Estimating correlation under interval uncertainty
    Jalal-Kamali, Ali
    Kreinovich, Vladik
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 37 (1-2) : 43 - 53
  • [10] Nonlinear optimization under interval uncertainty
    V. I. Levin
    Cybernetics and Systems Analysis, 1999, 35 : 297 - 306