Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator

被引:371
|
作者
Younger, J. Michael
Chen, Liling
Ren, Hong-Yu
Rosser, Meredith F. N.
Turnbull, Emma L.
Fan, Chun-Yang
Patterson, Cam
Cyr, Douglas M. [1 ]
机构
[1] Univ N Carolina, Sch Med, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Sch Med, Cyst Fibrosis Ctr, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Sch Med, Carolina Cardiovasc Biol Ctr, Chapel Hill, NC 27599 USA
关键词
D O I
10.1016/j.cell.2006.06.041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis arises from the misfolding and premature degradation of CFTRAF508, a Cl(-)ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTRAF508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTRAF508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTIR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTRAF508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTRAF508.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 50 条
  • [1] Stress activated MAPK influence the quality control of misfolded cystic fibrosis transmembrane conductance regulator.
    Hegde, Ramanath Narayana
    Parashuraman, Seetharaman
    Iorio, Francesco
    Di Bernardo, Diego
    Luini, Alberto
    FASEB JOURNAL, 2013, 27
  • [2] Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator
    Kunzelmann, K
    Schreiber, R
    Nitschke, R
    Mall, M
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 440 (02): : 193 - 201
  • [3] Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator
    Karl Kunzelmann
    Rainer Schreiber
    Roland Nitschke
    Marcus Mall
    Pflügers Archiv, 2000, 440 (2): : 193 - 201
  • [4] The cystic fibrosis transmembrane conductance regulator and ATP
    Devidas, S
    Guggino, WB
    CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (04) : 547 - 552
  • [5] Where Is the Cystic Fibrosis Transmembrane Conductance Regulator?
    Barbry, Pascal
    Marcet, Brice
    Caballero, Ignacio
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (10) : 1214 - 1216
  • [6] Biosynthesis of cystic fibrosis transmembrane conductance regulator
    Pranke, Iwona M.
    Sermet-Gaudelus, Isabelle
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2014, 52 : 26 - 38
  • [7] THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR
    RIORDAN, JR
    ANNUAL REVIEW OF PHYSIOLOGY, 1993, 55 : 609 - 630
  • [8] Glycosylation and the cystic fibrosis transmembrane conductance regulator
    Scanlin, TF
    Glick, MC
    RESPIRATORY RESEARCH, 2001, 2 (05) : 276 - 279
  • [9] Cystic Fibrosis Transmembrane Conductance Regulator and Pseudomonas
    Zemanick, Edith T.
    Accurso, Frank J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189 (07) : 763 - 765
  • [10] Glycosylation and the cystic fibrosis transmembrane conductance regulator
    Thomas F Scanlin
    Mary Catherine Glick
    Respiratory Research, 2