An Lp-Lq-version of Morgan's theorem for the Dunkl-Bessel transform

被引:2
|
作者
Mejjaoli, Hatem [1 ]
Trimeche, Khalifa [1 ]
机构
[1] Dept Math, Tunis 1060, Tunisia
关键词
Dunkl-Bessel transform; Morgan's theorem;
D O I
10.1080/10652460500421744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give an L-p - L-q - version of Morgan's theorem for the Dunkl-Bessel transform F-D,F-B on R-+(d+1).. More precisely, we prove that for all 1 <= p, q <= +infinity, alpha > 2, eta = alpha/(alpha - 1) and a > 0, b > 0, then for all measurable function f on R-+(d+1), the conditions e(a parallel to x parallel to alpha) f is an element of L-k,beta(p) (R-+(d+1)) and e(b parallel to y parallel to eta) F-D,F-B(f) is an element of L-k,beta(q) (R-+(d+1)) imply f = 0, if and only if (a alpha)(1/alpha)(b eta)(1/eta) > (sin(pi/2)(eta- 1))(1/eta), where L-k,beta(p) (R-+(d+1)), are the Lebesgue spaces associated with the Dunkl - Bessel transform.
引用
收藏
页码:591 / 602
页数:12
相关论文
共 50 条