Comparison of different methods to suppress muscle artifacts in EEG signals

被引:5
|
作者
Santillan-Guzman, Alina [1 ,2 ]
Heute, Ulrich [1 ]
Stephani, Ulrich [3 ]
Galka, Andreas [4 ]
机构
[1] Christian Albrechts Univ Kiel, Fac Engn, Kaiserstr 2, D-24143 Kiel, Germany
[2] Univ Popular Autonoma Estado Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
[3] Christian Albrechts Univ Kiel, Dept Neuropediat, Schwanenweg 20, D-24105 Kiel, Germany
[4] Christian Albrechts Univ Kiel, Inst Med Psychol & Med Sociol, Preusserstr 1-9, D-24105 Kiel, Germany
关键词
Electroencephalography; Independent component analysis; State-space modeling; Low-pass filter; INDEPENDENT COMPONENT ANALYSIS; REMOVAL;
D O I
10.1007/s11760-016-1020-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Independent component analysis (ICA) is an approved method for (e.g., muscle) artifact removal in electroencephalography (EEG). But, as it creates only components from n signals, it may fail to clearly separate the artifacts. In order to keep the strengths of ICA and overcome its limitations, we extend ICA by state-space modeling (SSM), thereby enabling . Rather than exploring an optimized choice of the ICA algorithm, the effect of this extension is analyzed. Four methods, low-pass filtering (LPF), ICA, ICA-LPF, and ICA-SSM, are applied, first, to a clean epilepsy EEG segment artificially contaminated by muscle artifacts (MA), thereafter to 7 epilepsy patients' data. Both by visual assessment by an experienced clinician, and by quantitative measures, ICA-SSM is proven to remove MA better and with less signal distortion than ICA-LPF and much better than pure LPF or ICA.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 50 条
  • [1] Comparison of different methods to suppress muscle artifacts in EEG signals
    Alina Santillán-Guzmán
    Ulrich Heute
    Ulrich Stephani
    Andreas Galka
    Signal, Image and Video Processing, 2017, 11 : 761 - 768
  • [2] The Removal Of Ocular Artifacts From EEG Signals: A Comparison of Performances For Different Methods
    Klados, M. A.
    Papadelis, C.
    Lithari, C. D.
    Bamidis, P. D.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 1259 - 1263
  • [3] Introducing a Combination of ICA-EMD to Suppress Muscle and Ocular Artifacts in EEG Signals
    Santillan-Guzman, A.
    Oliveros-Oliveros, J. J.
    Morin-Castillo, M. M.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1250 - 1253
  • [4] Removal of muscular artifacts in EEG signals: a comparison of linear decomposition methods
    Frølich L.
    Dowding I.
    Brain Informatics, 2018, 5 (1) : 13 - 22
  • [5] A Study on Ocular and Facial Muscle Artifacts in EEG Signals for BCI Applications
    Reyes, Carmina E.
    Rugayan, Janine Lizbeth C.
    Rullan, Carl Jason G.
    Oppus, Carlos M.
    Tangonan, Gregory L.
    TENCON 2012 - 2012 IEEE REGION 10 CONFERENCE: SUSTAINABLE DEVELOPMENT THROUGH HUMANITARIAN TECHNOLOGY, 2012,
  • [6] Comparison of different classification methods for the preictal stage detection in EEG signals.
    Yildiz, M.
    Bergil, E.
    Oral, C.
    BIOMEDICAL RESEARCH-INDIA, 2017, 28 (02): : 858 - 865
  • [7] Artifact processing of Epileptic EEG Signals: An Overview of different types Artifacts
    Qayoom, Abdul
    Abdul, Wahab
    2013 International Conference on Advanced Computer Science Applications and Technologies (ACSAT), 2014, : 358 - 361
  • [8] A Comparison of Feature Extraction Methods for EEG Signals
    Moura, A.
    Lopez, S.
    Obeid, I.
    Picone, J.
    2015 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2015,
  • [9] Statistical Comparison of Classification Methods in EEG Signals
    Ekim, Gunes
    Atasoy, Ayten
    Ikizler, Nuri
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [10] A comparison of methods to suppress electrocardiographic artifacts in local field potential recordings
    Stam, M. J.
    van Wijk, B. C. M.
    Sharma, P.
    Beudel, M.
    Pina-Fuentes, D. A.
    de Bie, R. M. A.
    Schuurman, P. R.
    Neumann, W. -j.
    Buijink, A. W. G.
    CLINICAL NEUROPHYSIOLOGY, 2023, 146 : 147 - 161