Fingerprint ROI Segmentation Based on Deep Learning

被引:0
|
作者
Stojanovic, Branka [1 ]
Marques, Oge [2 ]
Neskovic, Aleksandar [3 ]
Puzovic, Snezana [1 ]
机构
[1] Inst Vlatacom, Milutina Milankovica 5, Belgrade 11070, Serbia
[2] Florida Atlantic Univ, Coll Engn & Comp Sci, 777 Glades Rd, Boca Raton, FL 33431 USA
[3] Univ Belgrade, Sch Elect Engn, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia
关键词
Deep Learning; CNN; NN; fingerprint; ROI segmentation;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper presents a novel method for fingerprint ROI (region of interest) segmentation using Deep learning technique - Convolutional Neural Networks. Experimental results, obtained using a publicly available test database of 200 fingerprint images in two variations - with and without Gaussian noise, demonstrate that this method is competitive with Fourier coefficients and NN based method for fingerprint images without noise, while it significantly outperforms it, in all three figures of merit, for fingerprint images with noise.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [1] ANN Based Fingerprint Image ROI Segmentation
    Stojanovic, Branka
    Neskovic, Aleksandar
    Popovic, Zdravko
    Lukic, Vojislav
    2014 22ND TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2014, : 505 - 508
  • [2] Sensor-invariant Fingerprint ROI Segmentation Using Recurrent Adversarial Learning
    Joshi, Indu
    Utkarsh, Ayush
    Kothari, Riya
    Kurmi, Vinod K.
    Dantcheva, Antitza
    Roy, Sumantra Dutta
    Kalra, Prem Kumar
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Prediction of abnormal hepatic region using ROI thresholding based segmentation and deep learning based classification
    Shah, Shubham Kamlesh
    Mishra, Ruby
    Mishra, Bhabani Shankar Prasad
    Pandey, Om
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2020, 64 (04) : 382 - 392
  • [4] Fingerprint ROI Segmentation Using Fourier Coefficients and Neural Networks
    Stojanovic, Branka
    Neskovic, Aleksandar
    Marques, Oge
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 484 - 487
  • [5] Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout
    Joshi, Indu
    Kothari, Riya
    Utkarsh, Ayush
    Kurmi, Vinod K.
    Dantcheva, Antitza
    Roy, Sumantra Dutta
    Kalra, Prem Kumar
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 60 - 69
  • [6] Overlapped Fingerprint Separation Based on Deep Learning
    Yih, Chi-Hsiao
    Hung, Jui-Lung
    Wu, Jin-An
    Chen, Li-Ming
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON DIGITAL MEDICINE AND IMAGE PROCESSING (DMIP 2018), 2018, : 14 - 18
  • [7] Deep Learning Based Fingerprint Subsurface Reconstruction
    Liu F.
    Zhang W.-T.
    Liu H.-Z.
    Liu G.-J.
    Shen L.-L.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (10): : 2033 - 2046
  • [8] ROI-based Fingerprint Quality Estimation
    Xie, Shan Juan
    Yang, Ju Cheng
    Yoon, Sook
    Park, Dong Sun
    ICMECG: 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT, PROCEEDINGS, 2009, : 460 - +
  • [9] An effective sign language learning with object detection based ROI segmentation
    Kim, Sunmok
    Ji, Yangho
    Lee, Ki-Baek
    2018 SECOND IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC), 2018, : 330 - 333
  • [10] ROI Based Deep Learning Enhancement for CBCT Based Radiomics Analysis
    Huang, M.
    Zhang, Z.
    Lai, Y.
    Chang, Y.
    Jiang, Z.
    Lee, J.
    Yin, F.
    Ren, L.
    MEDICAL PHYSICS, 2021, 48 (06)