Approach to asymptotically diffusive behavior for Brownian particles in periodic potentials: Extracting information from transients

被引:11
|
作者
Dean, David S. [1 ,2 ]
Oshanin, Gleb [3 ,4 ]
机构
[1] Univ Bordeaux, F-33400 Talence, France
[2] CNRS, LOMA, UMR 5798, F-33400 Talence, France
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75005 Paris, France
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
关键词
PERTURBATION-THEORY; CONSTANT; MOTION; HELIX; DRIFT;
D O I
10.1103/PhysRevE.90.022112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A Langevin process describing diffusion in a periodic potential landscape has a time-dependent diffusion constant, which means that its average mean-squared displacement (MSD) only becomes linear at late times. The long-time, or effective diffusion, constant can be estimated from the slope of a linear fit of the MSD at late times. Due to the crossover between a short time microscopic diffusion constant, which is independent of the potential, to the effective late-time diffusion constant, a linear fit of the MSD will not in general pass through the origin and will have a nonzero constant term. Here we address how to compute the constant term and provide explicit results for Brownian particles in one dimension in periodic potentials. We show that the constant is always positive and that at low temperatures it depends on the curvature of the minimum of the potential. For comparison we also consider the same question for the simpler problem of a symmetric continuous time random walk in discrete space. Here the constant can be positive or negative and can be used to determine the variance of the hopping time distribution.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Approach to asymptotically diffusive behavior for Brownian particles in media with periodic diffusivities
    Dean, David S.
    Guerin, Thomas
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [2] From Ballistic to Diffusive Behavior in Periodic Potentials
    M. Hairer
    G. A. Pavliotis
    Journal of Statistical Physics, 2008, 131 : 175 - 202
  • [3] From Ballistic to diffusive behavior in periodic potentials
    Hairer, M.
    Pavliotis, G. A.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (01) : 175 - 202
  • [4] Diffusion of Brownian particles: dependence on the structure of the periodic potentials
    Asaklil, A
    Boughaleb, Y
    Mazroui, A
    Chhib, M
    El Arroum, L
    SOLID STATE IONICS, 2003, 159 (3-4) : 331 - 343
  • [5] Gaussian models for the distribution of Brownian particles in tilted periodic potentials
    Kulikov, D. A.
    Agudov, N. V.
    Spagnolo, B.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (02): : 263 - 269
  • [6] The long time behavior of Brownian motion in tilted periodic potentials
    Cheng, Liang
    Yip, Nung Kwan
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 297 : 1 - 32
  • [7] Brownian particles in random and quasicrystalline potentials: How they approach the equilibrium
    Schmiedeberg, M.
    Roth, J.
    Stark, H.
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (04): : 367 - 377
  • [8] Brownian particles in random and quasicrystalline potentials: How they approach the equilibrium
    M. Schmiedeberg
    J. Roth
    H. Stark
    The European Physical Journal E, 2007, 24 : 367 - 377
  • [9] Brownian particles in periodic potentials: Coarse-graining versus fine structure
    Defaveri L.
    Barkai E.
    Kessler D.A.
    Physical Review E, 2023, 107 (02)
  • [10] Diffusion of periodically forced Brownian particles moving in space-periodic potentials
    Gang, H
    Daffertshofer, A
    Haken, H
    PHYSICAL REVIEW LETTERS, 1996, 76 (26) : 4874 - 4877